Итерационный метод вращений Якоби

Собственные значения и вектора матрицы. Применение итерационного метода вращений Якоби для решения симметричной полной проблемы собственных значений эрмитовых матриц. Алгоритмы решения задач и их реализация на современных языках программирования.

Подобные документы

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция, добавлен 02.06.2008

  • Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.

    реферат, добавлен 10.08.2014

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие, добавлен 04.03.2010

  • Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа, добавлен 11.12.2011

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа, добавлен 05.05.2010

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат, добавлен 09.06.2011

  • Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа, добавлен 18.06.2011

  • Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.

    курсовая работа, добавлен 22.08.2010

  • Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.

    реферат, добавлен 20.05.2019

  • Статистический подход к измерению правовой информации. Графический метод решения задач линейного программирования. Методика решения задач линейного программирования графическим методом. Количество информации как мера неопределенности состояния системы.

    контрольная работа, добавлен 04.06.2010

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие, добавлен 08.02.2010

  • Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.

    курсовая работа, добавлен 16.05.2010

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа, добавлен 08.08.2007

  • Обыкновенные и модифицированные жордановы исключения. Последовательность решения задач линейного программирования симплекс-методом применительно к задаче максимизации: составлении опорного плана решения, различные преобразования в симплекс-таблице.

    курсовая работа, добавлен 01.05.2011

  • Сравнительный анализ численных методов решения систем линейных алгебраических уравнений. Вычисление определителей и обратных матриц. Реализация методов в виде машинных программ на языке высокого уровня и решение задач на ЭВМ. Модификации метода Гаусса.

    реферат, добавлен 04.03.2011

  • Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.

    реферат, добавлен 24.11.2009

  • Интерпретация ортогональной и унитарной матрицы. Основные детерминанты матриц. Определение комплексных квадратных невырожденных и вырожденных матриц. Методы нахождения определителя. Метод конденсации Доджсона. Кососимметричная полилинейная функция строк.

    курсовая работа, добавлен 04.06.2015

  • Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.

    курсовая работа, добавлен 14.02.2010

  • Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.

    курсовая работа, добавлен 27.01.2014

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация, добавлен 20.02.2015

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа, добавлен 04.09.2010

  • Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.

    контрольная работа, добавлен 04.09.2010

  • Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.

    курсовая работа, добавлен 28.06.2013

  • Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.

    дипломная работа, добавлен 25.06.2011

  • Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.

    контрольная работа, добавлен 27.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.