Вычисление пределов с помощью формулы Тейлора

Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.

Подобные документы

  • Понятие, основные свойства элементарных булевых функций и соотношения между ними. Формулировка принципа двойственности. Совершенные дизъюнктивная и конъюнктивная нормальные формы. Многочлен (полином) Жегалкина. Суперпозиция и замыкание класса функций.

    презентация, добавлен 05.02.2016

  • Вычисление вероятности непогашения кредита юридическим и физическим лицом, с помощью формулы Байеса. Расчет выборочной дисперсии, его методика, основные этапы. Определение вероятности выпадания белого шара из трех, взятых наудачу, обоснование результата.

    контрольная работа, добавлен 11.02.2014

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа, добавлен 08.06.2010

  • Решение задачи по вычислению определенного интеграла с помощью квадратурных формул и основная идея их построения. Количество параметров квадратурного выражения, степень подынтегральной функции. Построение квадратурных формул с плавающими узлами.

    реферат, добавлен 08.08.2009

  • Бесселевы функции с любым индексом. Формулы приведения для бесселевых функций. Интегральное представление бесселевых функций с целым индексом. Ряды Фурье-Бесселя. Асимптотическое представление бесселевых функций для больших значений аргумента.

    курсовая работа, добавлен 22.09.2008

  • Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

    презентация, добавлен 18.09.2013

  • Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.

    контрольная работа, добавлен 25.03.2014

  • Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.

    контрольная работа, добавлен 15.01.2014

  • Вычисление первого и второго замечательных пределов, неопределенного и определенного интегралов, площади криволинейной трапеции, координат середин сторон треугольника с заданными вершинами. Определение критических точек и асимптот графика функции.

    контрольная работа, добавлен 29.01.2010

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа, добавлен 19.01.2010

  • Открытие формулы австрийским математиком Георгом Пиком в 1899 году. Доказательство Теоремы Пика, последовательность этапов для различных вариантов. Нахождение и расчет площадей четырехугольников в квадратных сантиметрах с использованием данной формулы.

    презентация, добавлен 14.04.2013

  • Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

    контрольная работа, добавлен 28.03.2014

  • Вычисление определителя с использованием правила треугольника и метода разложения по элементам ряда. Решение системы уравнений тремя способами: методом Гаусса, методом Кремера и матричным методом. Составление уравнения прямой и плоскости по формуле.

    контрольная работа, добавлен 16.02.2015

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа, добавлен 11.03.2013

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа, добавлен 21.11.2014

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья, добавлен 11.01.2004

  • Дифференциальное уравнение Бесселя и его интегралы. Рекуррентные формулы для данных функций. Применение теоремы Коши к интегралу Пуассона. Некоторые применения функций Бесселя. Задача на тепловое равновесие. Дифференциальное уравнение второго порядка.

    курсовая работа, добавлен 06.06.2013

  • Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.

    контрольная работа, добавлен 08.07.2011

  • Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.

    курсовая работа, добавлен 09.10.2011

  • Нахождение частных производных, градиента функции. Вычисление интеграла, переход от двойного интеграла к последовательному, пределов интегрирования. Общее и частное решение дифференциального уравнения второго порядка. Применение признака Даламбера.

    контрольная работа, добавлен 11.05.2013

  • Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.

    презентация, добавлен 17.03.2017

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка, добавлен 01.07.2009

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа, добавлен 07.09.2010

  • Задача теории приближений - нахождение связей между структурными свойствами функции и порядком стремления к нулю последовательности ее наилучших приближений тригонометрическими или алгебраическими полиномами. Вычисление модулей гладкости для функций.

    дипломная работа, добавлен 11.06.2013

  • Вспомогательные леммы. Теоремы Джексона для к-го обобщенного модуля гладкости. Обобщенное неравенство Минковского. Тригонометрический полином. Вычисление модулей гладкости для некоторых функций. Понятие прямой и обратной теоремы теории приближений.

    курсовая работа, добавлен 26.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.