Конечные автоматы
Описание абстрактных, структурных и частичных конечных автоматов. Работа синхронных конечных автоматов, содержащих различные типы триггеров, определение сигналов их возбуждения. Пример канонического метода структурного синтеза. Схема дверного замка.
Подобные документы
- 76. Симплекс-метод
Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.
контрольная работа, добавлен 06.04.2012 Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.
реферат, добавлен 27.03.2012Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.
курсовая работа, добавлен 25.11.2011Порядковые определения. Топологические определения. Вполне упорядоченные множества и их свойства. Конечные цепи и их порядковые типы. Порядковый тип. Свойства ординальных чисел. Пространство ординальных чисел W(1) и его свойства.
дипломная работа, добавлен 08.08.2007Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.
курсовая работа, добавлен 23.11.2011Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.
контрольная работа, добавлен 26.12.2012Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.
презентация, добавлен 17.09.2013Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
курсовая работа, добавлен 08.06.2013Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация, добавлен 17.09.2013Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.
курсовая работа, добавлен 30.04.2011Особенности изучения векторного метода в школьном курсе геометрии. История возникновения и становления аналитических методов. Различные подходы к определению понятия вектора в математике. Логико-дидактический анализ "Векторы в пространстве" в 10 классе.
дипломная работа, добавлен 08.12.2013Тождества, используемые для системы Жигалкина. Многочлен Жигалкина функции одной, двух и трех переменных. Содержание теоремы. Практический пример преобразования многочлена с помощью метода цепочки и неопределенных коэффициентов. Закон полного поглощения.
контрольная работа, добавлен 06.08.2013Нахождение предела прочности алюминиевых деформируемых сплавов при испытании на растяжение. Расчет коэффициентов регрессии. Выбор и описание метода условной оптимизации. Результаты обработки данных эксперимента. Определение типа поверхности отклика.
курсовая работа, добавлен 10.06.2009- 90. Метод хорд
Контрольный пример к алгоритму метода хорд. Вычисление и уточнение корня методом хорд и касательных. Нахождение второй производной заданной функции. Уточненное значение корня решаемого уравнения на заданном интервале. Код программы данного примера.
лабораторная работа, добавлен 02.12.2014 Методы планирования многофакторных экспериментов и преимущества их использования. Математическое планирование эксперимента и его основные направления. Пример применения метода дробного факторного эксперимента. Расчет коэффициентов уравнения регрессии.
курсовая работа, добавлен 13.05.2014Класс рациональных функций. Практический пример решения интегралов. Линейная замена переменной. Сущность и главные задачи метода неопределенных коэффициентов. Особенности, последовательность представления подынтегральной дроби в виде суммы простых дробей.
презентация, добавлен 18.09.2013Понятие о статистической сводке и группировке. Типологическая, аналитическая, структурная группировка. Понятие структурных сдвигов: сопоставление данных структурных группировок. Техника выполнения группировок: интервальные и дискретные вариационные ряды.
контрольная работа, добавлен 23.07.2009Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.
презентация, добавлен 06.12.2011Топологическое определение гомотопии. Смысл, преимущества и недостатки гомотопного метода анализа. Уравнения деформации нулевого и старшего порядка. Особенности теоремы сходимости и значение трех фундаментальных правил, полиномиальное выражение.
доклад, добавлен 13.08.2011Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.
курсовая работа, добавлен 12.10.2009Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.
лабораторная работа, добавлен 24.09.2014Пример вычисления определителя второго порядка в общем виде. Свойства векторного произведения и их доказательства. Пример применения правила Крамера для решения систем из n уравнений с n неизвестными. Векторное произведение векторов заданных проекциями.
контрольная работа, добавлен 14.03.2009Влияние способа перехода от системы F(x)=x к системе x=ф(x) на точность полученного решения. Общее описание программного обеспечения и алгоритмов. Функциональное назначение программы. Программный модуль metod1.m и metod2.m. Описание тестовых задач.
курсовая работа, добавлен 27.04.2011Исторический обзор формирование тригонометрии как науки. Различные способы введения понятия тригонометрических функций. Анализ школьных учебников М.И. Башмакова и А.Г. Мордковича по данной тематике. Перспективы использования материала для преподавания.
дипломная работа, добавлен 02.07.2011