Доказательство Великой теоремы Ферма с помощью метода бесконечных (неопределенных) спусков
Использование теоретико-числового и алгебраического метода доказательства, с наглядной геометрической верификацией, который был изобретен П. Ферма. Верификация метода бесконечных (неопределенных) спусков, который применяется для доказательства теоремы.
Подобные документы
Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация, добавлен 17.08.2015Задачи для обыкновенных дифференциальных уравнений. Квадратурные формулы. Теоретические основы метода сеток для решения задачи Коши. Погрешность аппроксимации, устойчивость, основная теорема метода сеток. Схема предиктор-корректор 2-го порядка.
реферат, добавлен 07.12.2013Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".
научная работа, добавлен 29.03.2011- 105. Теорема Дирихле
Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа, добавлен 12.08.2009 Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация, добавлен 29.03.2016Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.
учебное пособие, добавлен 23.04.2009Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.
презентация, добавлен 18.04.2013Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа, добавлен 28.03.2014Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа, добавлен 26.04.2014Постановка задачи прогнозирования количества отказов радиоэлектронного оборудования на следующий год в аэропорту. График общей тенденции отказов. Использование метода временных рядов. Выделение тренда, применение метода скользящих средних значений.
курсовая работа, добавлен 19.12.2009Решение дифференциального уравнения, удовлетворяющие условию Липшица. Доказательство теоремы о существовании и единственности липшицевого решения. Принцип неподвижной точки (Шаудера). Пример неединственности (Winston). Доказательство по теореме Арцела.
реферат, добавлен 14.01.2010- 113. Гипотеза Биля
Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
творческая работа, добавлен 29.05.2009 - 114. Формула Грина
Связь с помощью формулы Грина криволинейного интеграла по замкнутому контуру с двойным интегралом по области, ограниченного этим контуром. Преобразование двойного интеграла по контуру, обходимого в положительном направлении. Доказательство теоремы.
презентация, добавлен 17.09.2013 Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.
презентация, добавлен 11.04.2013Основные обозначения и понятия, относящиеся к множествам, операции над ними. Объединение, пересечение и разность двух множеств и непринадлежность к нему элемента. Первая и вторая теорема Вейерштрасса, Ферма и Ролля. Вычисление интеграла вероятности.
контрольная работа, добавлен 12.12.2010Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.
курсовая работа, добавлен 24.10.2010Рациональность решения задач с помощью теорем Чевы и Менелая, чем их решение другими способами, например векторным. Доказательство теорем, дополнительное построение. Трудности, связанные с освоением этих теорем, оправданные применением при решении задач.
контрольная работа, добавлен 05.05.2019Сущность графического метода нахождения оптимального значения целевой функции. Особенности и этапы симплексного метода решения задачи линейного программирования, понятие базисных и небазисных переменных, сравнение численных значений результатов.
задача, добавлен 21.08.2010Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.
курсовая работа, добавлен 13.11.2012Перетворення звичайного дробу в десятковий за допомогою конгруенцій. Захоплення Йоганна Бернуллі, дільники реп’юнітів і представлення звичайних дробів десятковим, довжина періоду дробу з простим знаменником. Доведення теореми Ферма для заданих значень.
курсовая работа, добавлен 14.04.2015Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.
курсовая работа, добавлен 08.04.2013Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.
дипломная работа, добавлен 09.06.2019- 124. Нелинейные уравнения
Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.
лабораторная работа, добавлен 28.06.2013 Построение таблицы истинности. Доказательство истинности заключения путём построения дерева доказательства или методом резолюции. Выполнение различных бинарных операций. Построение графа вывода пустой резольвенты. Основные правила исчисления предикатов.
курсовая работа, добавлен 28.05.2015