Нейронные сети
Преимущества нейронных сетей. Модели нейронов, представляющих собой единицу обработки информации в нейронной сети. Ее представление с помощью направленных графов. Понятие обратной связи (feedback). Основная задача и значение искусственного интеллекта.
Подобные документы
Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа, добавлен 12.11.2010- 27. Нейронные сети
Искусственные нейронные сети как вид математических моделей, построенных по принципу организации и функционирования сетей нервных клеток мозга. Виды сетей: полносвязные, многослойные. Классификация и аппроксимация. Алгоритм обратного распространения.
реферат, добавлен 07.03.2009 Этапы решения задачи классификации цифр арабского алфавита на основе нейронных сетей: выбор класса, структуры и пакета нейронной сети, ее обучение, требования к информационной и программной совместимости, составу и параметрам технических средств.
реферат, добавлен 19.10.2010Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.
презентация, добавлен 14.08.2013Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.
дипломная работа, добавлен 22.09.2011Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.
контрольная работа, добавлен 30.11.2015Характеристика моделей обучения. Общие сведения о нейроне. Искусственные нейронные сети, персептрон. Проблема XOR и пути ее решения. Нейронные сети обратного распространения. Подготовка входных и выходных данных. Нейронные сети Хопфилда и Хэмминга.
контрольная работа, добавлен 28.01.2011История развития искусственного интеллекта. Экспертные системы: их типы, назначение и особенности, знания и их представление. Структура идеальной и инструменты построения экспертных систем. Управление системой продукции. Семантические сети и фреймы.
реферат, добавлен 20.12.2011Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа, добавлен 29.04.2009Эволюция систем искусственного интеллекта. Направления развития систем искусственного интеллекта. Представление знаний - основная проблема систем искусственного интеллекта. Что такое функция принадлежности и где она используется?
реферат, добавлен 19.05.2006Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.
курсовая работа, добавлен 26.03.2016Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа, добавлен 25.03.2014История возникновения, примеры использования и основные виды искусственных нейронных сетей. Анализ задач, решаемых при помощи Персептрона Розенблатта, создание схемы имитационной модели в среде Delphi. Исходные коды компьютерной программы Perseptron.
дипломная работа, добавлен 18.12.2011Психодиагностика и нейронные сети. Математические модели и алгоритмы психодиагностики. Решение нейросетями задач психодиагностики. Интуитивное предсказание нейросетями взаимоотношений. Полутораслойный предиктор с произвольными преобразователями.
диссертация, добавлен 02.10.2008Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.
дипломная работа, добавлен 21.03.2011Модель и задачи искусственного нейрона. Проектирование двуслойной нейронной сети прямого распространения с обратным распространением ошибки, способной подбирать коэффициенты ПИД-регулятора, для управления движения робота. Комплект “LEGO Mindstorms NXT.
отчет по практике, добавлен 13.04.2015Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат, добавлен 21.10.2013Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.
дипломная работа, добавлен 21.10.2013Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа, добавлен 08.02.2017Определение в процессе исследования эффективного способа защиты информации, передающейся по Wi-Fi сети. Принципы работы Wi-Fi сети. Способы несанкционированного доступа к сети. Алгоритмы безопасности беспроводных сетей. Нефиксированная природа связи.
курсовая работа, добавлен 18.04.2014Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа, добавлен 25.02.2015Построение векторной модели нейронной сети. Проектирование и разработка поискового механизма, реализующего поиск в полнотекстовой базе данных средствами нейронных сетей Кохонена с применением модифицированного алгоритма расширяющегося нейронного газа.
курсовая работа, добавлен 18.07.2014Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.
курсовая работа, добавлен 28.05.2009Особенности создания имитационной модели сети кафедры. Проведение экспериментов для получения информации об "узких местах" проектируемой сети. Расчет активного и пассивного оборудования. Построение логической схемы сети. Анализ загрузки каналов связи.
курсовая работа, добавлен 11.12.2012Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа, добавлен 05.05.2015