Методы интегрирования
Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.
Подобные документы
Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.
контрольная работа, добавлен 21.07.2013Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация, добавлен 21.09.2013Математическая формулировка задачи, существующие численные методы и схемы алгоритмов. Интерполирование функции, заданной в узлах, методом Вандермонда. Среднеквадратичное приближение функции. Вычисление интеграла функций по составной формуле трапеций.
курсовая работа, добавлен 14.04.2009Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа, добавлен 17.12.2013Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.
курсовая работа, добавлен 19.09.2011Углы и их измерение. Соответствие между углами и числовым рядом. Геометрический смысл тригонометрических функций. Свойства тригонометрических функций. Основное тригонометрическое тождество и следствия из него. Универсальная тригонометрическая подстановка.
учебное пособие, добавлен 18.04.2012Исторический обзор формирования тригонометрии как науки от древности до наших дней. Введение понятия тригонометрических функций на уроках алгебры и начал анализа по учебникам А.Г. Мордковича, М.И. Башмакова. Решения линейных дифференциальных уравнений.
дипломная работа, добавлен 02.07.2011Исторический обзор формирование тригонометрии как науки. Различные способы введения понятия тригонометрических функций. Анализ школьных учебников М.И. Башмакова и А.Г. Мордковича по данной тематике. Перспективы использования материала для преподавания.
дипломная работа, добавлен 02.07.2011Расчет первообразной, построение ее графика. Построение семейства первообразных при изменении произвольной постоянной от -10 до 10. Расчет площади площадь криволинейной трапеции. Поиск интеграла методом подстановки. Расчет длины кривой ro=a(1+сosphi).
контрольная работа, добавлен 02.11.2011- 85. Десятичные дроби
Из истории десятичных и обыкновенных дробей. Действия над десятичными дробями. Сложение (вычитание) десятичных дробей. Умножение десятичных дробей. Деление десятичных дробей.
реферат, добавлен 29.05.2006 Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.
контрольная работа, добавлен 05.01.2015Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация, добавлен 18.09.2013Понятие двойного интеграла. Интегральная сумма, ее зависимость от способа разбиения отрезка и выбора точек. Конечный предел интегральной суммы, не зависящий от способа разбиения области и выбора точек. Интегрирующая функция и область интегрирования.
презентация, добавлен 17.09.2013Исследование функции, построение ее графика, используя дифференциальное исчисление. Вычисление неопределенных интегралов, используя методы интегрирования. Пределы функции. Определение области сходимости степенного ряда. Решение дифференциальных уравнений.
контрольная работа, добавлен 06.09.2015На протяжении многих веков на языках народов ломаным числом именовали дробь. Необходимость в дробях возникла на ранней ступени развития человечества. Виды дробей. Запись дробей в Египте, Вавилоне. Римская система дробей. Дроби на Руси - "ломаные числа".
презентация, добавлен 21.01.2011Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация, добавлен 18.09.2013Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.
конспект урока, добавлен 23.10.2013Появление слова "дробь" в русском языке в VIII веке. Старые названия дробей: полтина, четь, треть, полчеть, полтреть. Особенности древнеримской дробной системы. Л. Пизанский - ученый, который стал использовать и распространять современную запись дробей.
презентация, добавлен 18.11.2013Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа, добавлен 29.08.2010Комплексная форма записи простейших преобразований плоскости. Определение, основные свойства комплексного отображения. Использование простейших рациональных функций для выполнения некоторых конформных отображений. Построение профилей Жуковского-Чаплыгина.
курсовая работа, добавлен 03.12.2014Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа, добавлен 21.12.2009Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа, добавлен 13.02.2013Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.
курсовая работа, добавлен 12.05.2009- 100. Решение задачи Коши
Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
курсовая работа, добавлен 23.09.2016