Исследование методов решения системы дифференциальных уравнений с постоянной матрицей
Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
Подобные документы
Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа, добавлен 19.01.2014Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.
курсовая работа, добавлен 21.10.2011Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.
контрольная работа, добавлен 27.08.2013Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа, добавлен 09.01.2009Нахождение особых точек уравнений, определение их типов, построение фазовых траекторий в окрестности каждой особой точки. Исследование циклических траекторий на изохронность, устойчивости нулевого решения, доказывание существования циклов в уравнениях.
контрольная работа, добавлен 23.09.2010Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
презентация, добавлен 15.09.2014Разработка программного обеспечения для решения нелинейных систем алгебраических уравнений методом дифференцирования по параметру и исследование влияние метода интегрирования на точность получаемого решения. Построение графиков переходных процессов.
курсовая работа, добавлен 26.04.2011Решение эллиптических и параболических дифференциальных уравнений в частных производных. Суть метода Кранка-Николсона и теории разностных схем для теплопроводности. Построение численных методов с помощью вариационных принципов, описание Matlab и Mathcad.
курсовая работа, добавлен 13.03.2011Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа, добавлен 04.05.2010Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат, добавлен 17.06.2014Поиск базисного решения для системы уравнений, составление уравнения линии, приведение его к каноническому виду и построение кривой. Собственные значения и векторы линейного преобразования. Вычисление объема тела и вероятности наступления события.
контрольная работа, добавлен 12.11.2012Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат, добавлен 12.08.2009Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие, добавлен 04.03.2010Решение системы линейных уравнений двумя способами: по формулам Крамера и методом Гаусса. Решение задачи на нахождение производных, пользуясь правилами и формулами дифференцирования. Исследование заданных функций методами дифференциального исчисления.
контрольная работа, добавлен 16.03.2010Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.
реферат, добавлен 12.06.2010Представления фазовых кривых систем двух обыкновенных дифференциальных уравнений вблизи критического направления. Построение примеров, удовлетворяющих методу Фроммера. Нахождение характеристических чисел 1 и 2 рода дифференциального уравнения в C++.
дипломная работа, добавлен 11.02.2012Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.
курс лекций, добавлен 27.05.2010Поиск нулей функции - исследование и построение различных функций зависимостей. Исследование непрерывных процессов. Метод простой итерации. Итерационный процесс Ньютона, аналитическое задание системы уравнений и локализация области нахождения корня.
реферат, добавлен 08.08.2009Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа, добавлен 23.04.2013Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.
дипломная работа, добавлен 15.12.2012Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа, добавлен 13.03.2013Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.
курсовая работа, добавлен 03.11.2011