Прямые методы решения систем линейных алгебраических уравнений
Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
Подобные документы
Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.
контрольная работа, добавлен 20.04.2016Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа, добавлен 08.01.2016Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.
курсовая работа, добавлен 15.08.2012Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.
курсовая работа, добавлен 01.10.2009Культ античной Греции. Вопросы элементарной геометрии. Книга Диофанта "Арифметика". Решение неопределенных уравнений, диофантовых уравнений высоких степеней. Составление системы уравнений. Нахождение корней квадратного уравнения, метод Крамера.
реферат, добавлен 18.01.2011Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа, добавлен 19.09.2011Влияние способа перехода от системы F(x)=x к системе x=ф(x) на точность полученного решения. Общее описание программного обеспечения и алгоритмов. Функциональное назначение программы. Программный модуль metod1.m и metod2.m. Описание тестовых задач.
курсовая работа, добавлен 27.04.2011Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.
дипломная работа, добавлен 09.04.2015Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа, добавлен 19.03.2011Теоретические основы решения уравнений, содержащих параметр. Анализ школьных учебников по алгебре и началам анализа. Основные виды уравнений, содержащих параметр. Основные методы решения уравнений, содержащих параметр.
дипломная работа, добавлен 08.08.2007- 87. Изучение матриц
Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа, добавлен 13.07.2009 Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.
лабораторная работа, добавлен 15.07.2009Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа, добавлен 19.01.2014Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа, добавлен 17.12.2010Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".
дипломная работа, добавлен 08.08.2007Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.
контрольная работа, добавлен 17.02.2014Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа, добавлен 23.04.2013Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.
контрольная работа, добавлен 28.03.2014Историческая справка о возникновении и развитии теории неопределенных уравнений. Числовые сравнения и их свойства, а также линейные сравнения с одним неизвестным и методы их решения. Методы решения линейных диофантовых уравнений с двумя неизвестными.
курсовая работа, добавлен 01.07.2013Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.
контрольная работа, добавлен 19.01.2009Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция, добавлен 02.06.2008- 98. Численные методы
Решение системы линейных уравнений с неизвестными методами Гаусса, Зейделя и простой итерации. Вычисление корня уравнения методами дихотомии, хорды и простой итерации. Нахождение приближённого значения интеграла с точностью до 0,001 методом Симпсона.
контрольная работа, добавлен 05.07.2014 Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа, добавлен 05.07.2015Преобразования уравнений, нахождение соответствующих критериев подобия. Подобие стационарных и нестационарных физических полей. Масштабные преобразования алгебраических и дифференциальных уравнений. Моделирование задач с начальным и граничным условиями.
реферат, добавлен 20.01.2010