Имитационное моделирование системы массового обслуживания

Составление имитационной модели и расчет показателей эффективности системы массового обслуживания по заданны параметрам. Сравнение показателей эффективности с полученными путем численного решения уравнений Колмогорова для вероятностей состояний системы.

Подобные документы

  • Систему дифференциальных уравнений Колмогорова. Решение системы алгебраических уравнений для финальных вероятностей состояний. Графики зависимостей. Тип системы массового обслуживания по характеру входящего потока и распределению времени обслуживания.

    контрольная работа, добавлен 01.03.2016

  • Теория массового обслуживания – область прикладной математики, анализирующая процессы в системах производства, в которых однородные события повторяются многократно. Определение параметров системы массового обслуживания при неизменных характеристиках.

    курсовая работа, добавлен 08.01.2009

  • Понятие системы массового обслуживания, ее сущность и особенности. Теория массового обслуживания как один из разделов теории вероятностей, рассматриваемые вопросы. Понятие и характеристика случайного процесса, его виды и модели. Обслуживание с ожиданием.

    курсовая работа, добавлен 15.02.2009

  • Математическая теория массового обслуживания как раздел теории случайных процессов. Системы массового обслуживания заявок, поступающих через промежутки времени. Открытая марковская сеть, ее немарковский случай, нахождение стационарных вероятностей.

    курсовая работа, добавлен 07.09.2009

  • Общая структура системы массового обслуживания. Каналы и линии связи, вычислительные машины, объединенные общей структурой, число каналов обслуживания. Регулярный поток с ограниченным последействием. Применение различных величин и функций в системе.

    курсовая работа, добавлен 13.11.2011

  • Определение случайного процесса и его характеристики. Основные понятия теории массового обслуживания. Понятие марковского случайного процесса. Потоки событий. Уравнения Колмогорова. Предельные вероятности состояний. Процессы гибели и размножения.

    реферат, добавлен 08.01.2013

  • Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.

    контрольная работа, добавлен 20.07.2010

  • Стационарное распределение вероятностей. Построение математических моделей, графов переходов. Получение уравнения равновесия систем массового обслуживания с различным числом приборов, требованиями различных типов и ограниченными очередями на приборах.

    дипломная работа, добавлен 23.12.2012

  • Примеры процессов размножения и гибели в случае простейших систем массового обслуживания. Математическое ожидание для системы массового обслуживания. Дополнительный поток и бесконечное число приборов. Система с ограничением на время пребывания заявки.

    курсовая работа, добавлен 26.01.2014

  • Оптимизация управления потоком заявок в сетях массового обслуживания. Методы установления зависимостей между характером требований, числом каналов обслуживания, их производительностью и эффективностью. Теория графов; уравнение Колмогoрова, потоки событий.

    контрольная работа, добавлен 01.07.2015

  • Основные понятия теории марковских цепей, их использование в теории массового обслуживания для расчета распределения вероятностей числа занятых приборов в системе. Методика решения задачи о наилучшем выборе. Понятие возвратных и невозвратных состояний.

    курсовая работа, добавлен 06.11.2011

  • Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.

    контрольная работа, добавлен 26.02.2012

  • Основные понятия теории массового обслуживания: марковский процесс, простой поток, сеть Джексона. Исследование стационарного распределения сети с ромбовидным контуром: для марковских и немарковских процессов, а также для сети с отрицательными заявками.

    дипломная работа, добавлен 17.12.2012

  • Исследование численного решения начальной задачи для системы дифференциально-алгебраических уравнений с запаздывающим аргументом. Условия преобразования задачи к аргументу, обеспечивающему наилучшую обусловленность соответствующей системы уравнений.

    статья, добавлен 12.10.2010

  • Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы.

    контрольная работа, добавлен 08.09.2010

  • Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.

    курсовая работа, добавлен 12.10.2009

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа, добавлен 24.06.2009

  • Характеристика открытой сети массового обслуживания с многорежимными стратегиями обслуживания, в которую поступают обычные положительные заявки и пуассоновские потоки информационных сигналов, оказывающие разовое воздействие на соответствующий узел сети.

    курсовая работа, добавлен 02.03.2010

  • Некоторые математические вопросы теории обслуживания сложных систем. Организация обслуживания при ограниченной информации о надёжности системы. Алгоритмы безотказной работы системы и нахождение времени плановой предупредительной профилактики систем.

    реферат, добавлен 19.06.2008

  • Байесовские алгоритмы оценивания (фильтр Калмана). Постановка задачи оценивания для линейных моделей динамической системы и измерений. Запись модели эволюции и модели измерения в матричном виде. Составление системы уравнений, описывающей эволюцию системы.

    курсовая работа, добавлен 14.06.2011

  • Проведение численного моделирования системы, описанной системой дифференциальных уравнений первого порядка. Схемы моделирования методом последовательного (непосредственного) интегрирования, вспомогательной переменной и методом канонической формы.

    контрольная работа, добавлен 12.12.2013

  • Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.

    дипломная работа, добавлен 24.09.2012

  • Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.

    презентация, добавлен 08.12.2011

  • Возникновение теории вероятностей как науки. Ранние годы Андрея Николаевича Колмогорова. Первые публикации Колмогорова. Круг жизненных интересов Андрея Николаевича. Присуждение академику Андрею Николаевичу Колмогорову, в марте 1963 года, премии Бальцана.

    реферат, добавлен 15.06.2010

  • Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.

    контрольная работа, добавлен 22.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.