Нечеткая логика. Математические основы
Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.
Подобные документы
- Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке. 
 курсовая работа, добавлен 22.04.2014
- Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств. 
 курсовая работа, добавлен 07.02.2011
- Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов. 
 лекция, добавлен 01.12.2009
- Математическая логика (бессмысленная логика), логика "здравого смысла" и современная логика. Математические суждения и умозаключения, их направления. Математическая логика и "Здравый смысл" в XXI веке. Неестественная логика в основаниях математики. 
 реферат, добавлен 21.12.2008
- Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств. 
 презентация, добавлен 23.12.2013
- Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга. 
 курс лекций, добавлен 08.08.2011
- Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации. 
 презентация, добавлен 29.10.2013
- Литералы рассуждения и вопрос об их отрицаниях. Математическая модель отрицания для рассуждения, содержащего связную совокупность суждений. Отрицания в математической логике и дополнения в алгебре множеств. Интерпретации формул математической логики. 
 контрольная работа, добавлен 03.09.2010
- Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики. 
 контрольная работа, добавлен 29.11.2010
- Мономорфные стрелки. Эпиморфные стрелки. Изострелки. КатегориЯ множеств. Мономорфизм в категории множеств. Эпиморфизм в категории множеств. Начальные и конечные объекты в категории множеств. Произведение в категории множеств. 
 дипломная работа, добавлен 08.08.2007
- Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество. 
 дипломная работа, добавлен 30.03.2011
- 12. Теория множествТеория множеств - одна из областей математики. Понятие, обозначение, основные элементы конечных и бесконечных множеств - совокупности или набора определенных и различимых между собой объектов, мыслимых как единое целое. Пустое и универсальное множество. 
 реферат, добавлен 14.12.2011
- 13. Оценка состояния объекта, подвергающегося воздействию, на основе построений функций принадлежностиПонятие нечеткого множества и свойства его элементов. Определение логических операций: отрицания, конъюнкции, дизъюнкции. Основные этапы нечеткого вывода, метод центра тяжести. Оценка состояния повреждения объекта на основе теории нечетких множеств. 
 курсовая работа, добавлен 22.07.2011
- 14. Теория множествПонятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними. 
 курсовая работа, добавлен 07.12.2012
- Применение методов математической логики и других разделов высшей математики в задачах теоретической лингвистики при анализе письменной речи на русском и английском языках. Исследование и распознавание речевых единиц. Методы математической логики. 
 реферат, добавлен 01.11.2012
- Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна. 
 реферат, добавлен 11.03.2009
- Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости. 
 курсовая работа, добавлен 16.05.2010
- Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул. 
 презентация, добавлен 23.12.2012
- Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения. 
 презентация, добавлен 12.12.2012
- 20. Логика на словахЭтапы развития логики. Имена ученых, внесших существенный вклад в развитие логики. Ключевые понятия монадической логики второго порядка. Язык логики предикатов. Автоматы Бучи: подход с точки зрения автоматов и полугрупп. Автоматы и бесконечные слова. 
 курсовая работа, добавлен 26.03.2012
- Разработка методики оценки состояния гидротехнического объекта, подверженного воздействию наводнений различной природы, с использованием теории нечетких множеств. Моделирование возможного риска с целью решения задачи зонирования прибрежной территории. 
 курсовая работа, добавлен 23.07.2011
- Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток. 
 дипломная работа, добавлен 08.08.2007
- История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики. 
 контрольная работа, добавлен 10.10.2014
- 24. Алгебра логикиОсновные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций. 
 реферат, добавлен 06.12.2010
- Изучение вопросов применения теории множеств, их отношений и свойств и теории графов, а также математических методов конечно-разностных аппроксимаций для описания конструкций РЭА (радиоэлектронной аппаратуры) и моделирования протекающих в них процессов. 
 реферат, добавлен 26.09.2010
