Методы численного интегрирования: Симпсона, Гаусса-Кристоффеля
Постановка задачи численного интегрирования. Классификация методов интегрирования: методы Ньютона-Котеса; методы статистических испытаний; сплайновые методы; методы наивысшей алгебраической точности. Метод Симпсона: суть; преимущества и недостатки.
Подобные документы
Выбор математической модели задачи. Применение численного интегрирования и его методы: прямоугольников, парабол, увеличения точности, Гаусса и Гаусса-Кронрода. Суть математического метода аппроксимации. Интерполяционные методы нахождения значений функции.
курсовая работа, добавлен 08.04.2009Исследование внутренней сходимости численного интегрирования методами Симпсона и трапеций различных функций, задаваемых с помощью функций языка C. Результаты исследования, их анализ, описание применения. Условия и характеристики выполнения программы.
курсовая работа, добавлен 14.03.2011Применения численного интегрирования. Интерполяционные методы нахождения значений функции. Методы прямоугольников, трапеций и парабол. Увеличение точности, методы Гаусса и Гаусса-Кронрода. Функциональные модели и программная реализация решения задачи.
курсовая работа, добавлен 25.01.2010Методы левых и правых прямоугольников численного интегрирования для вычисления интегралов. Геометрический смысл определённого интеграла. Программная реализация, блок-схемы алгоритмов. Результат работы тестовой программы. Решение задачи с помощью ЭВМ.
курсовая работа, добавлен 15.06.2013Формула Симпсона как интеграл от интерполяционного многочлена второй степени, рассмотрение сфер использования. Знакомство с основными особенностями и этапами написания программы для численного интегрирования с помощью формулы Симпсона, анализ примеров.
практическая работа, добавлен 16.03.2015Метод численного интегрирования. Использование метода половинного деления для решения нелинейного уравнения. Определение отрезка неопределенности для метода половинного деления. Получение формулы Симпсона. Уменьшение шага интегрирования и погрешности.
курсовая работа, добавлен 21.05.2013Математическое моделирование. Изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования. Интегрирование функций MATLAB.
курсовая работа, добавлен 27.09.2008Реализация интегрирования функции методами прямоугольников, трапеций, Симпсона. Построение графика сравнения точности решения методов интегрирования в зависимости от количества разбиений. Алгоритм расчета энтропии файлов с заданным расширением.
контрольная работа, добавлен 04.05.2015Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.
контрольная работа, добавлен 13.02.2016Особенности метода численного интегрирования обыкновенных дифференциальных уравнений. Расчет переходного процесса в нелинейной электрической цепи, вызванного ее включением или отключением. Метод численного интегрирования Рунге-Кутта с переменным шагом.
отчет по практике, добавлен 10.10.2011Разработка алгоритма решения задачи численного интегрирования методом трапеции. Словесное описание и блок-схема разработанного алгоритма программы. Описание интерфейса, главного окна и основных форм программы. Проверка работоспособности программы.
курсовая работа, добавлен 16.03.2012Изучение численных методов решения нелинейных уравнений. Построение годографа АФЧХ, графиков АЧХ и ФЧХ с указанием частот. Практическое изучение численных методов интегрирования дифференциальных уравнений высокого порядка, метод Рунге-Кутта 5-го порядка.
курсовая работа, добавлен 16.06.2009Особенности метода численного интегрирования функции одной переменной. Замена на каждом элементарном отрезке подынтегральной функции на многочлен первой степени (линейную функцию). Разработка алгоритма программы, ее листинг. Пример работы программы.
контрольная работа, добавлен 14.07.2012Методы вычисления определенных интегралов: метод трапеций и метод Симпсона (парабол). Примеры применения, блок-схемы методов трапеций и Симпсона. Разработка программы в объектно-ориентированной среде программирования Lazarus, конструирование интерфейса.
реферат, добавлен 18.04.2011Проектирование программного модуля. Описание схемы программы и структуры разрабатываемого пакета. Написание кода ввода исходных данных и основных расчетов. Тестирование программного модуля. Тестирование решения задачи. Методы численного интегрирования.
курсовая работа, добавлен 20.03.2014Разработка программы на языке высокого уровня, позволяющей для заданной функции рассчитать определенный интеграл приближенным и точным методом, оценить погрешность и вывести результаты на консоль. Определение площади методом входящих прямоугольников.
курсовая работа, добавлен 18.08.2012Метод хорд решения нелинейных уравнений. Вычисление интеграла методом Симпсона. Процесс численного решения уравнения. Окно программы расчета корней уравнения методом хорд. Алгоритм вычисления интеграла в виде блок-схемы. Выбор алгоритма для вычислений.
курсовая работа, добавлен 24.07.2012Идея численного интегрирования. Создание программы, вычисляющей определенный интеграл методом трапеций. Листинг программы, результаты работы. Проверка в среде Mathcad. Зависимость точности вычисления от количества отрезков разбиения, расчет погрешности.
отчет по практике, добавлен 28.04.2013- 19. Использование языков программирования высокого уровня для решения задач вычислительной математики
Методы численного интегрирования. Характеристика основных составляющих структурного программирования. Решение задания на языке высокого уровня Паскаль. Построение графического решения задачи в пакете Matlab. Решение задания на языке высокого уровня C.
курсовая работа, добавлен 10.05.2018 Решение дифференциальных уравнений первого порядка. Варианты методов Рунге-Кутта различных порядков. Основные методы численного решения задачи Коши. Повышение точности вычислений и итерационный метод уточнения. Дискретная числовая последовательность.
лабораторная работа, добавлен 14.05.2012Разработка прикладного программного обеспечения для решения расчетных задач для компьютера. Численное интегрирование - вычисление значения определённого интеграла. Проектирование алгоритма численного метода. Тестирование работоспособности программы.
курсовая работа, добавлен 03.08.2011Численные методы. Создание программного продукта, использование которого позволит одновременно исследовать два метода вычисления определенных интегралов: метод трапеций и метод Симпсона. Рассмотрен ход вычисления интеграла в виде кода программы.
курсовая работа, добавлен 14.04.2019Методы ветвей и границ первого и второго порядка. Оптимальный и пассивный поиск. Недостатки метода Ньютона. Метод золотого сечения. Примеры унимодальных функций. Динамическое и линейное программирование. Метод Жордана-Гаусса. Решение задачи коммивояжера.
курсовая работа, добавлен 20.07.2012Численные методы линейной алгебры. Матричный метод. Методы Крамера и Гаусса. Интерации линейных систем. Интерации Якоби и Гаусса - Зейделя. Листинг программы. Численные методы в электронных таблицах Excel и программе MathCAD, Microsoft Visual Basic
курсовая работа, добавлен 01.06.2008Общие сведения о системе Mathcad. Окно программы Mathcad и панели инструментов. Вычисление алгебраических функций. Интерполирование функций кубическими сплайнами. Вычисление квадратного корня. Анализ численного дифференцирования и интегрирования.
курсовая работа, добавлен 25.12.2014