Полиномы Жегалкина для логических операций

Свойства алгебры Жегалкина. Действия с логическими константами (нулём и единицей). Свойства элементарных булевых функций, задаваемых логическими операциями. Способы построения полиномов с помощью таблиц истинности (метод неопределенных коэффициентов).

Подобные документы

  • Полнота и замкнутость системы булевых функций. Алгоритм построения таблицы истинности двойственной функции. Класс L линейных функций, сущность полинома Жегалкина. Распознавание монотонной функции по вектору ее значений. Доказательство теоремы Поста.

    учебное пособие, добавлен 20.08.2014

  • Понятие, основные свойства элементарных булевых функций и соотношения между ними. Формулировка принципа двойственности. Совершенные дизъюнктивная и конъюнктивная нормальные формы. Многочлен (полином) Жегалкина. Суперпозиция и замыкание класса функций.

    презентация, добавлен 05.02.2016

  • Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.

    реферат, добавлен 06.12.2010

  • Использование эквивалентных преобразований. Понятие основных замкнутых классов. Метод минимизирующих карт и метод Петрика. Операция неполного попарного склеивания. Полином Жегалкина и коэффициенты второй степени. Таблицы значений булевых функций.

    контрольная работа, добавлен 06.06.2011

  • Алгоритм построения многочлена Жегалкина по совершенной дизъюнктивной нормальной форме. Диаграмма Эйлера-Венна, изображение универсального множества и подмножества. Проверка самодвойственности, монотонности и линейности логической функции двух переменных.

    контрольная работа, добавлен 20.04.2015

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие, добавлен 29.04.2009

  • Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.

    курсовая работа, добавлен 16.05.2010

  • Сокращенные, тупиковые дизъюнктивные нормальные формы. Полные системы булевых функций. Алгоритм Квайна, Мак-Класки минимизации булевой функции. Геометрическое представление логических функций. Геометрический метод минимизации булевых функций. Карты Карно.

    курсовая работа, добавлен 21.02.2009

  • Определение констант нуля и установление эквивалентности линейных функций при помощи таблицы истинности. Нахождение минимальной дизъюнктивной нормальной формы функции с помощью метода неопределенных коэффициентов. Преобразование функции методом Квайна.

    контрольная работа, добавлен 05.07.2014

  • Основные этапы развития булевой алгебры и применение минимальных форм булевых многочленов к решению задач, в частности, с помощью метода Куайна - Мак-Класки. Применение минимизирования логических форм при проектировании устройств цифровой электроники.

    курсовая работа, добавлен 24.05.2009

  • Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.

    реферат, добавлен 27.01.2011

  • Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.

    курсовая работа, добавлен 22.09.2009

  • Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.

    контрольная работа, добавлен 26.04.2011

  • Основные понятия алгебры логики. Дизъюнктивные и конъюнктивные нормальные формы. Сущность теоремы Шеннона. Булевы функции двух переменных. Последовательное и параллельное соединение двух выключателей. Свойства элементарных функций алгебры логики.

    контрольная работа, добавлен 29.11.2010

  • Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.

    контрольная работа, добавлен 20.01.2011

  • История возникновения булевой алгебры, разработка системы исчисления высказываний. Методы установления истинности или ложности сложных логических высказываний с помощью алгебраических методов. Дизъюнкция, конъюнкция и отрицание, таблицы истинности.

    презентация, добавлен 22.02.2014

  • Представление с помощью кругов Эйлера множественного выражения. Законы и свойства алгебры множеств, упрощение выражений. Система функций, ее возможные базисы. Минимизирование булевой функции. Метод Квайна – Мак-Класки. Определение хроматического числа.

    контрольная работа, добавлен 17.01.2011

  • Переключательные функции одного аргумента. Переключательные функции двух аргументов. Представление переключательной функции в виде многочленов. Совершенная дизъюнктивная нормальная форма переключательной функции. Функция в виде полинома Жегалкина.

    реферат, добавлен 27.11.2008

  • Основная функционально полная система логических функций. Законы алгебры логики в основной функционально полной системе и их следствия. Переместительный и распределительный законы. Закон инверсии (правило Де Моргана). Системы логических функций.

    реферат, добавлен 17.11.2008

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа, добавлен 11.01.2011

  • Свойства операций над множествами. Формулы алгебры высказываний. Функции алгебры логики. Существенные и фиктивные переменные. Проверка правильности рассуждений. Алгебра высказываний и релейно-контактные схемы. Способы задания графа. Матрицы для графов.

    учебное пособие, добавлен 27.10.2013

  • Составление таблицы значений функции алгебры логики и нахождение всех существенных переменных. Связный ориентированный и взвешенный граф. Построение функции полиномом Жегалкина. Текст программы для алгоритма Дейкстры. Определение единиц и нулей функции.

    контрольная работа, добавлен 27.04.2011

  • Основные определения математической логики, булевы и эквивалентные функции. Общие понятия булевой алгебры. Алгебра Жегалкина: высказывания и предикаты. Определение формальной теории. Элементы теории алгоритмов, рекурсивные функции, машина Тьюринга.

    курс лекций, добавлен 08.08.2011

  • Методы доказательства клаузы: с помощью резолюций и таблиц истинности. Определение ложности и истинности клаузы. Особенности составления легенды по клаузе. Составление клаузы по легенде. Определение истинности логического выражения путем конкретизации.

    контрольная работа, добавлен 14.06.2009

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация, добавлен 11.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.