Технологии извлечения знаний из больших баз данных
Data Mining как процесс поддержки принятия решений, основанный на поиске в данных скрытых закономерностей (шаблонов информации). Его закономерности и этапы реализации, история разработки данной технологии, оценка преимуществ и недостатков, возможности.
Подобные документы
Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.
реферат, добавлен 13.02.2014Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.
курсовая работа, добавлен 10.07.2017Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа, добавлен 14.06.2013Понятие информационных систем и принципы их проектирования. Изучение различных методов извлечения знаний, построение оптимальной информационной системы Data Mining, позволяющей разбивать набор данных, представленных реляционными базами данных на кластеры.
аттестационная работа, добавлен 14.06.2010Рассмотрение понятия и истории возникновения систем поддержки принятия решения. Приспособленность информационных систем к задачам повседневной управленческой деятельности. Понятие термина "интеллектуальный анализ данных". Методика извлечения знаний.
реферат, добавлен 14.04.2015Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.
контрольная работа, добавлен 13.06.2014Классификация задач системы поддержки принятия решений, их типы и принципы реализации при помощи программы "Выбор". Обзор современных систем автоматизированного проектирования "Компас", "AutoCad", "SolidWorks", оценка преимуществ и недостатков программ.
курсовая работа, добавлен 22.07.2014- 8. Data mining
Data mining, developmental history of data mining and knowledge discovery. Technological elements and methods of data mining. Steps in knowledge discovery. Change and deviation detection. Related disciplines, information retrieval and text extraction.
доклад, добавлен 16.06.2012 Обслуживание двух встречных потоков информации. Структура информационных систем. Разработка структуры базы данных. Режимы работы с базами данных. Четыре основных компонента системы поддержки принятия решений. Выбор системы управления баз данных.
курсовая работа, добавлен 21.04.2016Классификация систем поддержки принятия решений. Сравнительный анализ методик для оценки рисков розничного кредитования. Структура системы поддержки принятия решений, формирование начальной базы знаний. Проектирование базы данных информационной системы.
дипломная работа, добавлен 10.07.2017Обзор существующих решений на основе открытых данных. Технологии обработки данных и методы их визуализации. Социальные сети для извлечения данных. Ограничение географической локации. Выбор набора и формат хранения открытых данных, архитектура системы.
курсовая работа, добавлен 09.06.2017Базы данных (БД) и системы управления базами данных (СУБД) как основы современной информационной технологии, их роль в хранении и обработке информации. Этапы реализации БД, средств ее защиты и поддержки целостности. Протоколы фиксации и отката изменений.
презентация, добавлен 22.10.2013OLAP как автоматизированные технологии сложного (многомерного) анализа данных, Data mining - извлечение данных, интеллектуальный анализ. Виды запросов к многомерной базе данных, их содержание и анализ полученных результатов. Схема "звезда", "снежинка".
презентация, добавлен 19.08.2013Формы представляемой информации. Основные типы используемой модели данных. Уровни информационных процессов. Поиск информации и поиск данных. Сетевое хранилище данных. Проблемы разработки и сопровождения хранилищ данных. Технологии обработки данных.
лекция, добавлен 19.08.2013Основные модели представления знаний. Системы поддержки принятия решений. Диаграмма UseCase. Разработка базы данных на основе трех моделей: продукционные правила, семантическая сеть, фреймовая модель. Программная реализация системы принятия решений.
курсовая работа, добавлен 14.05.2014- 16. Хранилища данных
Концепции хранилищ данных для анализа и их составляющие: интеграции и согласования данных из различных источников, разделения наборов данных для систем обработки транзакций и поддержки принятия решений. Архитектура баз для хранилищ и витрины данных.
реферат, добавлен 25.03.2013 Система управление базами данных, реляционная модель. Принципы взаимодействия между клиентскими и серверными частями. Трехуровневая модель технологии "клиент-сервер". Фрактальные методы сжатия больших объемов данных. Анализ концепции хранилища данных.
курс лекций, добавлен 05.06.2009Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа, добавлен 22.10.2012- 19. Big Data
Проблемы оценки клиентской базы. Big Data, направления использования. Организация корпоративного хранилища данных. ER-модель для сайта оценки книг на РСУБД DB2. Облачные технологии, поддерживающие рост рынка Big Data в информационных технологиях.
презентация, добавлен 17.02.2016 - 20. Визуализация профиля пользователя социальной сети на основе обработки семантического описания данных
Анализ существующих музыкальных сетей, профиля музыкального файла. Технологии и возможности Web 2.0. Анализ алгоритмов в Data Mining. Структура социальной сети. Набор графических элементов, описывающий человека в зависимости от прослушиваемой музыки.
дипломная работа, добавлен 20.04.2012 Изучение основных элементов технологии баз данных Microsoft Access. Описание основных понятий и общих сведений базы данных и раскрытие конструктивных особенностей MS Access. Оценка возможностей и анализ основных преимуществ и недостатков баз MS Access.
курсовая работа, добавлен 22.09.2011Интеллектуальный анализ данных как метод поддержки принятия решений, основанный на анализе зависимостей между данными, его роль, цели и условия применения. Сущность основных задач интеллектуального анализа: классификации, регрессии, прогнозирования.
контрольная работа, добавлен 08.08.2013Возможности извлечения информации из баз данных. Программы для создания и обработки базы данных и создания пользовательского интерфейса. Обоснование выбора программных средств для реализации. Создание базы данных, интерфейса и базы данных к интерфейсу.
курсовая работа, добавлен 24.03.2023История создания, понятие, типы и функции системы управления базами данных. Изучение технологии копирования данных средствами устройства их хранения. Процесс разработки алгоритма и программы для нахождения максимального элемента массива А в массиве В.
отчет по практике, добавлен 08.02.2014Средства и технологии разработки приложений баз данных. Компоненты управления доступом к БД. Описание программного окружения доступа к данным. Механизм получения и отправки данных. Специфика связи внутреннего представления с интерфейсом приложения.
презентация, добавлен 19.08.2013