Методы нелинейной оптимизации

Изучение методов одномерной оптимизации и сравнение эффективности их применения для конкретных целевых функций. Нахождение минимума функции 1/|x-3|3 методами перебора, поразрядного поиска, дихотомии, золотого сечения, средней точки, хорд и Ньютона.

Подобные документы

  • Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.

    контрольная работа, добавлен 26.02.2012

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка, добавлен 01.07.2009

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат, добавлен 05.09.2010

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация, добавлен 17.09.2013

  • Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.

    реферат, добавлен 29.06.2015

  • Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.

    контрольная работа, добавлен 11.07.2013

  • Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.

    методичка, добавлен 07.01.2011

  • Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.

    презентация, добавлен 10.11.2014

  • Обработка одномерной и двумерной случайных выборок. Нахождение точечных оценок. Построение гистограммы функций распределения, корреляционной таблицы. Нахождение выборочного коэффициента корреляции. Построение поля рассеивания, корреляционные отношения.

    курсовая работа, добавлен 10.06.2013

  • Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".

    реферат, добавлен 24.11.2009

  • Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.

    контрольная работа, добавлен 14.08.2010

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат, добавлен 05.09.2010

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа, добавлен 26.12.2012

  • Поиск оптимального решения. Простейший способ исключения ограничений. Многомерные методы оптимизации, основанные на вычислении целевой функции. Метод покоординатного спуска. Модифицированный метод Хука-Дживса. Исследование на минимум функции Розенброка.

    курсовая работа, добавлен 21.11.2012

  • Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.

    контрольная работа, добавлен 01.04.2010

  • Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.

    реферат, добавлен 09.04.2012

  • Определение понятий "хорда", "пропорциональность", "приращение функции". Доказательство теорем Ферма, Ролля и Лагранжа. Особенности и условия применения метода хорд при решении уравнений разного порядка. Ознакомление с правилом пропорциональных частей.

    реферат, добавлен 25.05.2014

  • Основные понятия оптимизационных задач. Нахождение наибольших или наименьших значений многомерных функций в заданной области. Итерационные процессы с учетом градиента. Функционал для градиентного равенства и применение его в задачах условной оптимизации.

    реферат, добавлен 15.08.2009

  • Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.

    курсовая работа, добавлен 30.04.2011

  • Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.

    курс лекций, добавлен 06.03.2009

  • Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.

    презентация, добавлен 17.01.2011

  • Общая постановка задачи. Отделение корня. Уточнение корня. Метод половинного деления (бисекции). Метод хорд (секущих). Метод касательных (Ньютона). Комбинированный метод хорд и касательных. Задания для расчётных работ.

    творческая работа, добавлен 18.07.2007

  • Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.

    презентация, добавлен 21.09.2013

  • Симплекс как геометрическая фигура, являющаяся мерным обобщением треугольника. Математика и её место в жизни человека. Алгоритм решения задачи "нахождение наименьшего значения линейной функции симплексным методом". Составление начальной симплекс таблицы.

    контрольная работа, добавлен 29.07.2013

  • Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.

    контрольная работа, добавлен 07.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.