Закон больших чисел

Представление доказательства неравенства Чебышева. Формулирование закона больших чисел. Приведение примера нахождения математического ожидания и дисперсии для равномерно распределенной случайной величины. Рассмотрение содержания теоремы Бернулли.

Подобные документы

  • Понятие случайной величины, а также ее основные числовые характеристики. Случайная величина, подчиняющаяся нормальному закону распределения. Кривые плотности вероятности. Использование генератора случайных чисел. Изображение векторов в виде графика.

    лабораторная работа, добавлен 27.05.2015

  • В работе рассматриваются доказательства неразрешимости в рациональных ненулевых числах двух систем, которые легко касаются не только чисел, но и распространяются на рациональные функции, что, в конечном счёте, позволяет анализировать решение уравнения.

    творческая работа, добавлен 04.09.2010

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация, добавлен 18.09.2013

  • Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди

    доклад, добавлен 21.01.2009

  • Адекватная линейная регрессионная модель. Правило проверки адекватности. Определение математического ожидания, коэффициента детерминации, множественного коэффициента корреляции по характеристикам случайных величин. Оценка дисперсии случайной ошибки.

    контрольная работа, добавлен 13.08.2013

  • Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).

    лекция, добавлен 07.05.2013

  • Определение вероятности наступления события по формуле Бернулли. Построение эмпирической функции распределения и гистограммы для случайной величины. Вычисление коэффициента корреляции, получение уравнения регрессии. Пример решения задачи симплекс-методом.

    контрольная работа, добавлен 02.02.2012

  • Изучение основных определений и теорем, связанных с полукольцом натуральных чисел, описание его нулевого, главного и двухпорожденного идеалов. Исследование проблемы нахождения констант Фробениуса для аддитивной полугруппы, порожденной линейной формой.

    курсовая работа, добавлен 12.06.2010

  • Особенности функции распределения как самой универсальной характеристики случайной величины. Описание ее свойств, их представление с помощью геометрической интерпретации. Закономерности вычисления вероятности распределения дискретной случайной величины.

    презентация, добавлен 01.11.2013

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа, добавлен 29.05.2012

  • Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.

    курсовая работа, добавлен 10.03.2014

  • Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.

    реферат, добавлен 25.09.2009

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа, добавлен 18.07.2010

  • Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.

    презентация, добавлен 09.10.2011

  • История открытия нормального закона, его применение в науке и технике. Вероятность попадания случайной величины, подчиненной нормальному закону, на заданный участок. Нормальная функция распределения. Геометрическая интерпретация вероятного отклонения.

    контрольная работа, добавлен 21.04.2019

  • Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.

    статья, добавлен 28.07.2010

  • Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.

    дипломная работа, добавлен 08.08.2007

  • Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.

    контрольная работа, добавлен 26.07.2010

  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа, добавлен 04.02.2012

  • Формулы вычисления дисперсии суммы двух случайных величин с использованием категории математического ожидания. Характеристика понятий дисперсии. Особенности ее вычисления во взаимосвязи со средним квадратичным отклонением, определение размерности.

    презентация, добавлен 01.11.2013

  • Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.

    курсовая работа, добавлен 29.05.2006

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа, добавлен 16.02.2015

  • Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.

    реферат, добавлен 16.05.2009

  • Примеры пространства элементарных событий. Вероятность появления одного из двух несовместных событий. Функция распределения F(x,y) системы случайных величин. Расчет математического ожидания и дисперсии. Закон генеральной совокупности и его параметры.

    контрольная работа, добавлен 15.06.2012

  • Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа, добавлен 13.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.