Ряд Фибоначчи
Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.
Подобные документы
Члены последовательности и их изображение на числовой оси. Виды последовательностей (ограниченная, возрастающая, убывающая, сходящаяся, расходящаяся), их практические примеры. Определение и геометрический смысл предела числовой последовательности.
презентация, добавлен 21.09.2013- 27. Функции
Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.
презентация, добавлен 21.09.2013 Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди
доклад, добавлен 21.01.2009Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.
курсовая работа, добавлен 18.07.2010В работе рассматриваются доказательства неразрешимости в рациональных ненулевых числах двух систем, которые легко касаются не только чисел, но и распространяются на рациональные функции, что, в конечном счёте, позволяет анализировать решение уравнения.
творческая работа, добавлен 04.09.2010- 31. Геометрия чисел
Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.
курсовая работа, добавлен 29.05.2006 Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.
реферат, добавлен 22.03.2016Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.
задача, добавлен 07.06.2009Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).
лекция, добавлен 07.05.2013Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011Разработка индийскими математиками метода, позволяющего быстро находить простое число. Биография Эратосфена - греческого математика, астронома, географа и поэта. Признаки делимости чисел. Решето Эратосфена как алгоритм нахождения всех простых чисел.
практическая работа, добавлен 09.12.2009Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011Методи перевірки чисел на простоту: критерій Люка та його теореми, їх доведення. Теорема Поклінгтона та її леми. Метод Маурера - швидкий алгоритм генерації доведених простих чисел, близьких до випадкового та доведення Д. Коувером і Дж. Куіскуотером.
лекция, добавлен 08.02.2011- 40. Числа Бернулли
Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация, добавлен 02.06.2013 Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа, добавлен 24.06.2015История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.
реферат, добавлен 25.10.2012Изучение процесса появления действительных чисел, которые стали основой арифметики, а также способствовали возникновению рациональных и иррациональных чисел. Арифметика в трудах мыслителей Древней Греции. И. Ньютон и определение действительного числа.
реферат, добавлен 15.10.2013Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.
курсовая работа, добавлен 22.10.2011Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.
дипломная работа, добавлен 08.08.2007Теорема Бернулли как простейшая форма закона больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Качественные и количественные утверждения закона больших чисел, его практическое применение.
курсовая работа, добавлен 17.12.2009Доказательства существования иррациональных чисел. Арифметический подход Евклида к множеству иррациональных чисел. Рассуждения Дедекинда о непрерывности области вещественных чисел, неявном понятии точной верхней грани. Анализ бесконечно малых величин.
реферат, добавлен 08.05.2012- 48. Комплексні числа
Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.
реферат, добавлен 22.02.2010 Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа, добавлен 18.12.2010Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.
курсовая работа, добавлен 22.06.2015