Базовая реализация персептрона для обучения и распознавания простых фигур
Первое систематическое изучение искусственных нейронных сетей. Описание элементарного перцептрона. Программная реализация модели распознавания графических образов на основе перцептрона. Интерфейс программы, основные окна. Составление алгоритма приложения.
Подобные документы
Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.
презентация, добавлен 06.01.2014Исследование симметричных алгоритмов блочного шифрования. Минусы и плюсы алгоритма IDEA. Разработка программы аутентификации пользователя и сообщений на основе алгоритма IDEA. Выбор языка программирования. Тестирование и реализация программного средства.
курсовая работа, добавлен 27.01.2015Словесный, графический, табличный, программный способы представления алгоритма. Основные конструкции в любом алгоритмическом языке. Теория обнаружения, различения и оценивания сигналов. Радиолокационные системы обнаружения. Система распознавания образов.
презентация, добавлен 09.06.2015Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.
дипломная работа, добавлен 26.11.2013Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.
курсовая работа, добавлен 06.06.2012Оценка погрешности и точности в математике. Составление программы и алгоритма для численного дифференцирования с заданной допустимой погрешностью на алгоритмическом языке Turbo Pascal 7.0. Составление алгоритма и программы аппроксимации функции.
курсовая работа, добавлен 24.03.2012Виды социальных медиа. Критерии эффективности продвижения аккаунта в социальных сетях. Программная реализация алгоритма моделирования распространения информации в социальной сети "Twitter". Разработка клиентского приложения. Апробация интерфейса системы.
дипломная работа, добавлен 08.02.2016Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа, добавлен 05.10.2010Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа, добавлен 22.06.2011Понятие сетей и связи их компонентов. Характеристики и структура сетей. Основные модели, описывающие поведение сетей. Проектирование и реализация взвешенных сетей: требования к интерфейсу, выбор среды разработки, структура приложения. Анализ результатов.
курсовая работа, добавлен 29.06.2012Алгоритмы получения реалистических изображений. Применение алгоритма обратной трассировки лучей, ее математическая основа. Составление матрицы и программная реализация. Формирование отраженного и преломленного луча. Модульная структура программы.
курсовая работа, добавлен 24.06.2009Распознавание образов - задача идентификации объекта или определения его свойств по его изображению или аудиозаписи. История теоретических и технических изменений в данной области. Методы и принципы, применяемые в вычислительной технике для распознавания.
реферат, добавлен 10.04.2010Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.
реферат, добавлен 17.12.2011Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа, добавлен 11.04.2012Проектирование приложения на языке С# в среде Microsoft Visual Studio 2008: составление алгоритмов сегментации текста документа и распознавания слова "Указ" в нем, создание архитектуры и интерфейса программного обеспечения, описание разработанных классов.
курсовая работа, добавлен 05.01.2011Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.
дипломная работа, добавлен 17.08.2011Понятие о нейронных сетях и параллели из биологии. Базовая искусственная модель, свойства и применение сетей. Классификация, структура и принципы работы, сбор данных для сети. Использование пакета ST Neural Networks для распознавания значимых переменных.
реферат, добавлен 16.02.2015Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа, добавлен 19.10.2010Программная реализация синтаксического анализатора произвольного текста. Матрица и дерево переходов для программы. Код программы с построчным комментарием. Порядок запуска среды разработки Visual Studio. Интерфейс и номера Лихтенштейна, скриншот.
контрольная работа, добавлен 13.02.2014Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа, добавлен 05.01.2013Разработка игрового проекта на игровом движке Unity 3D в среде программирования MS Visual Studio 2017. Блок-схема алгоритма работы приема сообщений с сервера на клиенте с упрощенным описанием выполняемых команд. Реализация пользовательского интерфейса.
курсовая работа, добавлен 10.07.2017Разработка и реализация демонстрационного многопоточного приложения. Выбор основных средств реализации. Описание логики работы приложения и разработка программного обеспечения. Описание пользовательского интерфейса. Реализация потоков в Delphi.
курсовая работа, добавлен 10.08.2014Особенности метода неопределенных множителей Лагранжа, градиентного метода и метода перебора и динамического программирования. Конструирование алгоритма решения задачи. Структурная схема алгоритма сценария диалога и описание его программной реализации.
курсовая работа, добавлен 10.08.2014Разработка программы учета занятости компьютеров в лаборатории. Анализ требований, метод решения. Разработка алгоритма в виде структурных схем. Программная реализация в среде Borland Delphi. Минимальные системные требования для ее корректной работы.
дипломная работа, добавлен 10.06.2013Создание программы, автоматизирующей расчет коэффициента ритмичности продукции с использованием электронных таблиц средствами языка программирования Си. Консолидация данных в MSExcel. Программная реализация алгоритма. Тестирование разработанного ПО.
курсовая работа, добавлен 07.06.2014