Кореляційний аналіз
Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.
Подобные документы
Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричних рівнянь до алгебраїчних. Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь.
дипломная работа, добавлен 25.02.2011Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.
презентация, добавлен 06.02.2014Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадратні нерівності. Застосування графічних методів паралельного переносу в розв’язанні задач з параметрами.
дипломная работа, добавлен 16.06.2013Основные способы приведения квадратичных форм к каноническому виду. Выделение полных квадратов по стандартной схеме метода Лагранжа. Запись матрицы перехода. Линейное и невырожденное преобразование координат. Метод ортогональных преобразований.
лекция, добавлен 05.09.2013Таблиця основних інтегралів та знаходження невизначених інтегралів від елементарних функцій. Розкладання підінтегральної функції в лінійну комбінацію більш простих функцій. Метод підстановки або заміни змінної інтегрування. Метод інтегрування частинами.
реферат, добавлен 29.06.2011Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.
презентация, добавлен 06.02.2014Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції.
дипломная работа, добавлен 26.01.2011- 58. Дослідження диференціальних моделей з непарною кількістю рівнянь з відхиленням мішаного характеру
Дослідження диференціального рівняння непарного порядку і деяких систем з непарною кількістю рівнянь на нескінченному проміжку. Побудова диференціальної моделі, що описується диференціальним рівнянням, та дослідження її на скінченому проміжку часу.
дипломная работа, добавлен 24.12.2013 Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача, добавлен 25.03.2011Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.
реферат, добавлен 23.04.2015Прийоми розв’язання задач в першому і другому степені на Далекому Сході та Греції. Досягнення арабських математиків в області алгебраїчних рівнянь. Розв'язання похідного кубічного рівняння. Найвидатніші теореми про радикали вищих степенів, їх розв’язання.
курсовая работа, добавлен 23.02.2014- 62. Рівняння Пфаффа
Ознайлення з базовими поняттями, фактами, методами та найпростішими застосуваннями рівняння Пфаффа. Виконання завдань щодо розв’язання рівнянь Пфаффа. Аналітичний запис задачі про відшукання інтегральних поверхонь максимально можливої вимірності.
курсовая работа, добавлен 30.12.2013 Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.
отчет по практике, добавлен 02.03.2010Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа, добавлен 03.04.2010Поняття про алгебраїчний метод у геометрії. Побудова коренів квадратного рівняння та формул. Побудова деяких однорідних виразів циркулем і лінійкою. Ознака можливості побудови відрізка. Розв’язування задач на побудову. Поняття про однорідні функції.
курсовая работа, добавлен 17.03.2011Огляд існуючих програмних комплексів. Особливості Finite Difference Time Domain Solution. Метод кінцевих різниць у часовій області. Граничні умови PEC симетрії і АВС. Проблема обчислення граничних полів. Прості умови поглинання. Вибір мови програмування.
курсовая работа, добавлен 19.05.2014Розв’язання системи рівнянь методом Крамера, методом оберненої матриці та методом Гаусса. Розрахунок довжини ребра, кута між ребрами, рівняння висоти, рівняння площини грані і кута між ребром та гранню. Дослідження функції та побудува її графіку.
контрольная работа, добавлен 30.10.2011Расширення запасу чисел. Знаходження коренів рівняння з достатнім степенем точності. Запис степеня многочлена та його коефіцієнтів. Контрольний приклад находження відрізків додатних та від’ємних коренів. Описання основних процедур та функцій програми.
курсовая работа, добавлен 28.03.2009Історія виникнення методу координат та його розвиток. Канонічні рівняння прямої. Основні векторні співвідношення і формули, які використовуються для розв'язування стереометричних задач. Розробка уроку з використанням координатно-векторного методу.
дипломная работа, добавлен 05.05.2011Використання наближення функцій для практичних розрахунків, методи інтерполювання многочленом Лагранжа та Ньютона. Означення ермітових сплайнів з експоненціальними ланками та знаходження аналітичних виразів їх параметрів. Обчислення похибки наближення.
курсовая работа, добавлен 28.01.2011Варіаційне числення. Обчислення варіації інтегрального функціонала. Варіаційна задача з рухливими границями. Розв’язання диференційних рівнянь з лінійним відхиленням аргументу. Варіації розв’язків диференціального рівняння із розривною початковою умовою.
курсовая работа, добавлен 21.11.2011Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация, добавлен 29.10.2013Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.
курсовая работа, добавлен 29.04.2014Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
презентация, добавлен 17.01.2015- 75. Симплекс-метод
Сутність симплекс-методу у вирішенні задач лінійного програмування. Рішення задачі на відшукання максимуму або мінімуму лінійної функції за умови, що її змінні приймають невід'ємні значення і задовольняють деякій системі лінійних рівнянь або нерівностей.
реферат, добавлен 26.02.2012