Приемы быстрого счета
Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.
Подобные документы
Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.
контрольная работа, добавлен 05.10.2010Джерела теорії впорядкованих і частково впорядкованих алгебраїчних систем. Лінійно впорядкований простір ординальних чисел. Цілком упорядковані множини і їхні властивості. Кінцеві ланцюги і їхні порядкові типи. Загальні властивості ординальних чисел.
курсовая работа, добавлен 24.03.2011Характерные особенности логарифмов, их свойства. Методика определения логарифма числа по основанию a. Основные свойства логарифмической функции. Множество всех действительных чисел R. Анализ функций возрастания и убывания на всей области определения.
презентация, добавлен 06.02.2012Графы - определение и примеры. Задачи на нахождение всех комбинаций партий в шахматы между игроками, выбора нужной марки для письма, составления двузначного кода из возможных четырех цифр, расположения заданного количества гостей на разноцветных стульях.
презентация, добавлен 27.03.2011Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 17.05.2021- 81. Ряд Фибоначчи
Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.
доклад, добавлен 24.03.2012 Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа, добавлен 24.06.2015Натуральные, целые, иррациональные числа. Арифметическая и геометрическая прогрессии. Экономические вопросы, связанные с деньгами, прибылью, доходами. История открытий (Эвклид, Архимед, Лобачевский, Эйнштейн).
творческая работа, добавлен 18.06.2007Рассмотрение различных примеров комбинаторных задач в математике. Описание способов перебора возможных вариантов. Использование комбинаторного правила умножения. Составление дерева вариантов. Перестановки, сочетания, размещения как простейшие комбинации.
презентация, добавлен 17.10.2015Методи перевірки чисел на простоту: критерій Люка та його теореми, їх доведення. Теорема Поклінгтона та її леми. Метод Маурера - швидкий алгоритм генерації доведених простих чисел, близьких до випадкового та доведення Д. Коувером і Дж. Куіскуотером.
лекция, добавлен 08.02.2011В работе рассматриваются доказательства неразрешимости в рациональных ненулевых числах двух систем, которые легко касаются не только чисел, но и распространяются на рациональные функции, что, в конечном счёте, позволяет анализировать решение уравнения.
творческая работа, добавлен 04.09.2010Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.
презентация, добавлен 20.09.2014Теорема Бернулли как простейшая форма закона больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Качественные и количественные утверждения закона больших чисел, его практическое применение.
курсовая работа, добавлен 17.12.2009Коротка біографія Леонардо Пізанського (відоміший як Фібоначчі) - найвидатнішого західного математика Середньовіччя. Значення та основні властивості чисел Фібоначчі. Золотий переріз (формула Біне). Застосування чисел та золотої пропорції в різних галузях.
курсовая работа, добавлен 07.05.2015Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа, добавлен 18.12.2010История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа, добавлен 20.12.2009Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.
презентация, добавлен 21.09.2013Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.
курсовая работа, добавлен 12.05.2009Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.
реферат, добавлен 03.12.2007Особенности системы индексных обозначений. Специфика суммирования в тензорной алгебре. Главные операции в алгебре, которые называются сложением, умножением и свертыванием. Применение операции внутреннего умножения. Симметричные и антисимметричные объекты.
реферат, добавлен 07.12.2009Період від виникнення рахування до формального означення чисел і арифметичних операцій над ними за допомогою аксіом. Перші достовірні відомості про арифметичні знання, виявлені в історичних пам'ятках Вавилона і Стародавнього Єгипту. Натуральні числа.
презентация, добавлен 23.04.2014Множество неотрицательных действительных чисел как интерпретируемое подмножество R. Делимость в мультипликативных полугруппах. Строение числовых НОД и НОК полугрупп. Изучение мультипликативных полугрупп неотрицательных действительных чисел с 0 и 1.
дипломная работа, добавлен 27.05.2008Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.
презентация, добавлен 08.11.2011Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
презентация, добавлен 15.09.2014Узагальнення поняття теорії кілець. Будова півкільця натуральних чисел. Довільний ідеал півкільця натуральних чисел. Теорії напівгруп та константи Фробениуса. Система відрахувань по модулю. База методу математичної індукції. Текст програми "FindC".
курсовая работа, добавлен 26.01.2011