Математичне програмування в економіці
Дослідження предмету і сфери застосування математичного програмування в економіці. Класифікація задач цієї науки. Загальна задача лінійного програмування, деякі з методи її розв’язування. Економічна інтерпретація двоїстої задачі лінійного програмування.
Подобные документы
Вивчення теоретичних положень про симетричні многочлени і їх властивості: загальне поняття і характеристика властивостей. Математичне вживання симетричних многочленів: розв'язування систем рівнянь, доведення тотожності, звільнення від ірраціональності.
курсовая работа, добавлен 04.04.2011Поняття та методика визначення геометричного місця точки на площині. Правила та головні етапи процесу застосування даного математичного параметру до розв’язання задач на побудову. Вивчення прикладів задач на відшукання геометричного місця точки.
курсовая работа, добавлен 12.06.2011Максимуми і мінімуми в природі (оптика). Завдання на оптимізацію. Варіаційні методи розв’язання екстремальних задач. Найбільш відомі екстремальні задачі в геометрії: задача Дідони, Евкліда, Архімеда, Фаньяно, Ферма-Торрічеллі-Штейнера та Штейнера.
курсовая работа, добавлен 12.09.2014Ряди Фур'є за ортогональними системами тригонометричних функцій, ознаки їх збіжності. Постановка крайових задач, вивід рівняння теплопровідності. Принцип максимуму і теорема єдиності. Розв'язування неоднорідних задач параболічного типу для прямокутника.
дипломная работа, добавлен 24.01.2012Умова існування цілих розв’язків лінійних діофантових рівнянь, алгоритм Евкліда. Розв’язування лінійних рівнянь з двома змінними в цілих числах. Методика вивчення діофантових рівнянь в загальноосвітніх школах. Діофантові рівняння вищих порядків.
курсовая работа, добавлен 15.05.2019Розв'язання графічним методом математичної моделі задачі з організації випуску продукції. Розв'язання транспортної задачі методом потенціалів. Знаходження умовних екстремумів функцій методом множників Лагранжа. Розв'язання задач симплекс-методом.
контрольная работа, добавлен 16.07.2010Розгляд найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою: чисельна ітерація рівнянь Ньютона; алгоритм Бімана і Шофілда; метод Рунге-Кутта; методи Адамса, Крилова, Чаплигіна. Програма Рунге-Кутта на мові С#.
курсовая работа, добавлен 27.01.2011Імовірність несплати податку для кожного підприємця. Випадкова величина в інтервалі. Ряд розподілу добового попиту на певний продукт. Числові характеристики дискретної випадкової величини. Біноміальний закон розподілу, математичне сподівання величини.
контрольная работа, добавлен 16.07.2010Огляд існуючих програмних комплексів. Особливості Finite Difference Time Domain Solution. Метод кінцевих різниць у часовій області. Граничні умови PEC симетрії і АВС. Проблема обчислення граничних полів. Прості умови поглинання. Вибір мови програмування.
курсовая работа, добавлен 19.05.2014Розгляд нових методів екстримізації однієї змінної. Типи задач, які існують для розв’язування задач мінімізації на множині Х. Золотий поділ відрізка на дві неоднакові частини, дослідження його на стійкість. Алгоритм, текст програми, результат роботи.
курсовая работа, добавлен 01.04.2011Дослідження тенденцій захворюваності на туберкульоз (усі форми), рак, СНІД, гепатити А та Б в двадцяти чотирьох областях України, Криму, містах Києві та Севастополі в період з 1990 по 2005 роки шляхом застосування методів лінійного регресійного аналізу.
дипломная работа, добавлен 12.08.2010Точне знаходження первісної й інтеграла для довільних функцій. Чисельне визначення однократного інтеграла. Покрокові пояснення алгоритму методу Чебишева, реалізованого засобами програмування СКМ Mathcad. Знаходження інтегралу за допомогою панелі Calculus.
курсовая работа, добавлен 19.05.2016Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.
презентация, добавлен 06.02.2014Особливості статистичних методів оцінки вимірів в експериментальних дослідженнях. Класифікація помилок вимірювання. Математичне сподівання випадкової величини. Дисперсія як характеристика однорідності вимірювання. Метод виключення грубих помилок.
контрольная работа, добавлен 18.12.2010Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция, добавлен 30.04.2014Аналіз математичних моделей технологічних параметрів та методів математичного моделювання. Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання. Суть нечіткого методу групового врахування аргументів.
курсовая работа, добавлен 18.07.2010Методика визначення всіх коренів нелінійного рівняння різними способами: відрізка пополам, хорд, дотичних та ітерацій. Особливості та принципи застосування комп’ютерних технологій в даному процесі. Аналіз отаманих результатів і їх інтерпретація.
лабораторная работа, добавлен 15.12.2015Динаміка розвитку поняття ймовірності й математичного очікування. Закон більших чисел, необхідні, достатні умови його застосування. Первісне осмислення статистичної закономірності. Поява теорем Бернуллі й Пуассона - найпростіших форм закону більших чисел.
дипломная работа, добавлен 11.02.2011Поняття про алгебраїчний метод у геометрії. Побудова коренів квадратного рівняння та формул. Побудова деяких однорідних виразів циркулем і лінійкою. Ознака можливості побудови відрізка. Розв’язування задач на побудову. Поняття про однорідні функції.
курсовая работа, добавлен 17.03.2011Вивчення наслідків порушення основних припущень лінійного регресійного аналізу: припущення про незміщеність похибок, про однакову дисперсію і некорельованість похибок, про нормальний розподіл похибок та припущення про незалежність спостережень.
магистерская работа, добавлен 12.08.2010Методика введення основних понять теми, розв’язування задач векторним методом. Вибір тем, які легко викладаються з використанням векторного метода. Доведення теорем векторним методом. Виділення вмінь, необхідних для успішного оволодіння методом.
курсовая работа, добавлен 19.02.2014- 72. Лабіринти
Історія виникнення лабіринту. Лабіринт крітського царя Міноса - одне із семи чудес світу. Перші здогади "Правило руки". Лабіринти і замкнені криві, розв'язування різних лабіринтних задач, застосування елементів теорії графів і теорії ймовірностей.
реферат, добавлен 29.09.2009 Діяльнісний підхід до організації навчального процесу в педагогічному університеті. Змістове наповнення та методика використання історичного матеріалу на лекціях з математичного аналізу. Історичні задачі як засіб створення проблемних ситуацій на лекціях.
курсовая работа, добавлен 21.04.2015Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция, добавлен 30.04.2014Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача, добавлен 25.03.2011