Функция y = [x] и некоторые ее применения

Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.

Подобные документы

  • Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.

    реферат, добавлен 14.03.2013

  • Целочисленные функции (теоретические факты). Определения. Связь с непрерывными функциями. Количество целых чисел в интервалах. Спектры. "Mod": бинарная операция. Целочисленные функции (применение к решению задач).

    дипломная работа, добавлен 08.08.2007

  • Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.

    курсовая работа, добавлен 09.12.2011

  • Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа, добавлен 13.08.2011

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа, добавлен 07.09.2010

  • Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.

    контрольная работа, добавлен 16.11.2010

  • График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции. Исследование графиков функций и графическое решение уравнений, их разновидности и особенности.

    контрольная работа, добавлен 10.11.2010

  • Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".

    дипломная работа, добавлен 24.11.2007

  • Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".

    дипломная работа, добавлен 08.08.2007

  • Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.

    курсовая работа, добавлен 25.11.2011

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа, добавлен 12.06.2011

  • Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.

    методичка, добавлен 23.12.2009

  • Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация, добавлен 06.12.2011

  • Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.

    презентация, добавлен 18.01.2015

  • Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа, добавлен 06.12.2013

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа, добавлен 01.06.2014

  • Физическое и математическое определение центра масс. Основные свойства центров масс. Изучение закона Харди-Вайнберга. Решение геометрических задач барицентрическим методом. Применение барицентрических координат в химических и топологических задачах.

    курсовая работа, добавлен 25.02.2015

  • История открытия логарифмов. Определение логарифма. Натуральные, десятичные, двоичные логарифмы и их применение в теории информации и информатике. Логарифмические функции и их графики. Логарифмическая спираль. Риманова поверхность. Свойства функции.

    презентация, добавлен 20.02.2011

  • Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.

    контрольная работа, добавлен 26.02.2012

  • Матричные уравнения, их решение и проверка. Собственные числа и собственные векторы матрицы А. Решение системы методом Жорданa-Гаусса. Нахождение пределов и производных функции, ее градиент. Исследование функции методами дифференциального исчисления.

    контрольная работа, добавлен 10.02.2011

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа, добавлен 04.09.2010

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа, добавлен 17.06.2014

  • Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.

    учебное пособие, добавлен 30.12.2009

  • Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.

    курсовая работа, добавлен 05.12.2012

  • Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.

    курсовая работа, добавлен 25.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.