Классический метод математического описания и исследования многосвязных систем
Математическая модель линейной непрерывной многосвязной системы. Уравнение движения и общее решение неоднородной системы линейных дифференциальных уравнений. Сигнальный граф системы и структурная схема. Динамики САУ и определение ее характеристик.
Подобные документы
- 51. Применение систем компьютерного моделирования (СКМ) для исследования математической модели RLC-цепи
Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа, добавлен 17.11.2016 Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа, добавлен 16.12.2008Определение типа кривой по виду уравнения, уравнение с угловым коэффициентом, в отрезках и общее уравнение. Определение медианы, уравнения средней линии в треугольнике. Вопросы по линейной алгебре. Решение системы уравнения при помощи обратной матрицы.
контрольная работа, добавлен 31.10.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.
курсовая работа, добавлен 27.04.2011Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа, добавлен 05.07.2015Схематическое изображение и краткое описание заданной гидравлической системы, выражение работы данной системы с помощью уравнений. Написание уравнения системы виде входа-выхода, решение задачи в символьном виде. Разложение уравнения в ряд Тейлора.
лабораторная работа, добавлен 11.03.2012Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.
курсовая работа, добавлен 24.09.2013Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.
контрольная работа, добавлен 20.04.2016Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа, добавлен 15.05.2012Решение системы линейных уравнений по методу определителей, методом исключения (Гаусса), по методу Жордана и Холецкого. Определение недостатков и достоинств всех методов. Условия совместности и определенности системы в зависимости от коэффициентов.
контрольная работа, добавлен 02.05.2012Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа, добавлен 01.03.2012Анализ метода простой итерации для решения систем линейных алгебраических уравнений и реализация его в виде двух программ, каждая из которых использует свой собственный способ перехода от системы одного вида к другому. Программные и технические средства.
курсовая работа, добавлен 27.03.2011Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие, добавлен 08.02.2010Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.
презентация, добавлен 22.11.2014Рассмотрение теории дифференциальных уравнений. Выделение классов уравнений с систем, решения которых не имеют подвижных критических особых точек. Установление достаточности найденных условий путем сравнения с классическими системами типа Пенлеве.
курсовая работа, добавлен 01.06.2015Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа, добавлен 17.06.2015Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.
курсовая работа, добавлен 07.09.2012Решение системы уравнений по формулам Крамера, методом обратной матрицы и методом Гаусса. Преобразование и поиск общего определителя. Преобразование системы уравнений в матрицу и приведение к ступенчатому виду. Алгебраическое дополнение элемента.
контрольная работа, добавлен 15.01.2014Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.
контрольная работа, добавлен 20.04.2016Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа, добавлен 19.01.2014Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.
учебное пособие, добавлен 02.03.2010Решение задач линейной алгебры с разреженными матрицами на примере дискретизации уравнения Пуассона. Сущность векторных и матричных норм, основные виды итерационных методов, определение и условия их сходимости. Понятие инвариантных подпространств.
учебное пособие, добавлен 02.03.2010Расчет денежных расходов предприятия на выпуск изделий, при выражении их стоимости при помощи матриц. Проверка совместимости системы уравнений и их решение по формулам Крамера и с помощью обратной матрицы. Решение алгебраических уравнений методом Гаусса.
контрольная работа, добавлен 28.09.2014Решение системы линейных алгебраических уравнений по формулам Крамер. Возведение комплексного числа в натуральную степень. Исследование функции на возрастание и убывание. Нахождение ординаты в экстремальной точке. Задача на вычисление длины дуги кривой.
контрольная работа, добавлен 13.12.2012