Теория поверхности

Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.

Подобные документы

  • Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.

    презентация, добавлен 20.12.2010

  • Обзор понятия геометрической фигуры призмы, ее основания и боковых граней. Построение отрезков, нахождение высоты прямой и наклонной призмы. Расчет полной и боковой площадей поверхности фигуры. Изучение теоремы о площади боковой поверхности прямой призмы.

    презентация, добавлен 17.05.2012

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа, добавлен 14.01.2015

  • Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.

    реферат, добавлен 21.11.2010

  • Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.

    учебное пособие, добавлен 04.05.2011

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа, добавлен 19.12.2014

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация, добавлен 12.04.2015

  • Очерк жизни и творчества великого древнегреческого ученого Эвклида, оценка его достижений в области математики. Анализ главных произведений Эвклида, его основополагающие идеи и источники их формирования. Геометрия на поверхности отрицательной кривизны.

    реферат, добавлен 13.12.2010

  • Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.

    методичка, добавлен 03.02.2013

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике, добавлен 15.11.2014

  • Решение задач по геометрии. Составление кроссвордов на тему "Тела и фигуры вращения". Математика и история. Модель "Седла" - пример криволинейной поверхности. Изучение основных тел. Движение твердого тела вокруг неподвижной точки. Теорема Пифагора.

    творческая работа, добавлен 13.04.2014

  • Построение разверток поверхностей. Параллелепипед и его развертка. Чертеж развертки поверхности правильной пирамиды, прямого кругового конуса, прямого кругового цилиндра, правильной призмы, прямого эллиптического цилиндра. Способ нормального сечения.

    контрольная работа, добавлен 11.11.2014

  • Теория инвариантов уравнения линии второго порядка от трех переменных, определение канонического уравнения. Общий пример решения задачи на определение вида и расположения поверхности, заданной относительно декартовой прямоугольной системы координат.

    курсовая работа, добавлен 02.06.2013

  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья, добавлен 22.06.2008

  • Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.

    презентация, добавлен 20.04.2014

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат, добавлен 11.02.2011

  • Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.

    дипломная работа, добавлен 17.05.2010

  • Нахождение предела прочности алюминиевых деформируемых сплавов при испытании на растяжение. Расчет коэффициентов регрессии. Выбор и описание метода условной оптимизации. Результаты обработки данных эксперимента. Определение типа поверхности отклика.

    курсовая работа, добавлен 10.06.2009

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа, добавлен 10.01.2010

  • Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

    презентация, добавлен 21.09.2013

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа, добавлен 24.11.2009

  • Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.

    реферат, добавлен 25.09.2009

  • Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

    дипломная работа, добавлен 06.06.2011

  • Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.

    лекция, добавлен 04.09.2003

  • Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.

    презентация, добавлен 08.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.