Векторные поля
Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.
Подобные документы
Определение и назначение логарифмов, история их изобретения. Непер - изобретатель первых логарифмических таблиц. Свойства логарифмов, основные и дополнительные соотношения. Примеры выполнения некоторых заданий по вычислению логарифмов и таблица ответов.
презентация, добавлен 01.03.2012- 52. Математика
Определитель и его свойства. Элементарные преобразования, миноры и алгебраические дополнения. Элементы векторной алгебры. Уравнения линии на плоскости. Расстояние от точки до прямой. Введение в математический анализ. Тригонометрическая форма числа.
методичка, добавлен 10.01.2012 - 53. Призма
Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.
презентация, добавлен 20.12.2010 - 54. Формула Грина
Связь с помощью формулы Грина криволинейного интеграла по замкнутому контуру с двойным интегралом по области, ограниченного этим контуром. Преобразование двойного интеграла по контуру, обходимого в положительном направлении. Доказательство теоремы.
презентация, добавлен 17.09.2013 Использование численных методов, позволяющих найти приближенное значение определенного интеграла с заданной точностью. Анализ формул трапеции и параболы (Симпсона). Основной принцип построения формул приближенного вычисления определенного интеграла.
презентация, добавлен 18.09.2013Первоначальные элементы математики. Свойства натуральных чисел. Понятие теории чисел. Общие свойства сравнений и алгебраических уравнений. Арифметические действия со сравнениями. Основные законы арифметики. Проверка результатов арифметических действий.
курсовая работа, добавлен 15.05.2015Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.
контрольная работа, добавлен 01.12.2009Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.
презентация, добавлен 16.01.2015Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 17.05.2021Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.
курсовая работа, добавлен 04.07.2015Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.
контрольная работа, добавлен 12.05.2016Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача, добавлен 12.02.2011Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа, добавлен 02.03.2010Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Уравнение прямой линии на плоскости, условия перпендикулярности плоскостей. Вычисления для векторов и их значение, нахождение скалярных произведений, обратная матрица к квадратной матрице и вычисление определителя, бесконечные системы и их признаки.
тест, добавлен 08.03.2012Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.
учебное пособие, добавлен 30.12.2009Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат, добавлен 11.11.2008Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.
курсовая работа, добавлен 19.12.2012- 69. Площадь фигур
Площадь как величина, измеряющая размер площади, ее основные свойства и характеристики. Порядок определения площади треугольника, прямоугольника, четырехугольника, ромба, параллелограмма. Интегральное вычисление как методика определения площади.
презентация, добавлен 13.12.2010 Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение, добавлен 25.12.2010Понятие числовых функций с областью определения, аргумент и области их значений, свойства и графическое выражение. Определение четных и нечетных функций, периодичность тригонометрических функций. Свойства, используемые при построении их графиков.
презентация, добавлен 13.12.2011- 72. Свойства и особенности ортогонального проецирования, используемые при разработке графических моделей
Условия отображения формы и размеров геометрического объекта при его моделировании. Виды проецирования, используемые при разработке графических моделей. Свойства ортогонального проецирования, отображение на комплексном чертеже точки, прямой и плоскости.
реферат, добавлен 01.04.2011 Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.
курсовая работа, добавлен 10.04.2011Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.
отчет по практике, добавлен 15.11.2014Рассмотрение в теории вероятностей связи между средним арифметическим и математическим ожиданием. Основные формулы математического ожидания дискретного распределения, целочисленной величины, абсолютно непрерывного распределения и случайного вектора.
презентация, добавлен 01.11.2013