Використання елементарних перетворень для знаходження оберненої матриці
Вироджена (особлива) або не вироджена (не особлива) квадратна матриця та вироджене або не вироджене лінійне перетворення невідомих. Добуток матриці, асоціативності множення матриць. Опис програми Matrtest, містить початкову матрицю та її розмірність.
Подобные документы
Запис системи рівнянь та їх розв'язання за допомогою методів оберненої матриці та Гауса. Поняття вектора-стовпця з невідомих та вільних членів. Пошук оберненої матриці до даної. Послідовне виключення невідомих за допомогою елементарних перетворень.
контрольная работа, добавлен 16.07.2010Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
курсовая работа, добавлен 03.04.2010Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа, добавлен 18.06.2015Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача, добавлен 25.03.2011Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.
курсовая работа, добавлен 25.03.2011Побудування графа та матриці інцидентності. Перетворення графа у зважений за допомогою алгоритму Дейкстри, знаходження довжини найкоротшого шляху між двома вершинами та побудування дійсного шляху. Обхід дерева у прямому та зворотному порядках.
курсовая работа, добавлен 03.07.2014Застосування методу Гауса (або методу послідовного виключення невідомих) для розв'язання систем лінійних рівнянь. Економний спосіб запису за допомогою компактної схеми Гауса. Алгоритм знаходження рангу матриці, метод Гауса з вибором головного елемента.
курсовая работа, добавлен 02.10.2010Обчислення визначника матриці методом Гаусса. Розгорнення характеристичного визначника заданої матриці методом Крилова. Обчислення наближеного значення визначеного інтегралу за допомогою формули Сімпсона. Мінімум функції і суть методу золотого перерізу.
контрольная работа, добавлен 04.10.2009Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.
презентация, добавлен 06.02.2014Розгляд представлення і перетворення точок та прямих ліній. Правило здійснення обертання та відображення фігури на площині. Рівномірна і нерівномірна зміна масштабів. Двовимірний зсув і однорідні координати. Побудування матриці перетворення векторів.
лабораторная работа, добавлен 19.03.2011Розв'язання системи рівнянь методом Гауса і за формулами Крамера. Знаходження власних значень і векторів матриці, косинуса кута між векторами. Визначення з якої кількості товару більш вигідним становиться продаж у магазині. Диференціювання функцій.
контрольная работа, добавлен 06.03.2013Поняття особливої точки системи або рівняння. Пошук розв’язку характеристичного рівняння. Стійкий та нестійкий вузли, типові траєкторії. Дослідження особливої точки рівняння, способи побудови інтегральних кривих. Власний вектор матриці коефіцієнтів.
контрольная работа, добавлен 18.07.2010- 13. Інтеграл Фур’є
Поняття інтеграла Фур’є для функції дійсної змінної. Різні форми запису формули. Головне значення інтеграла та комплексна форма запису. Лінійне перетворення оберненого перетворення Фур’є. Алгоритм доведення ознаки Діні про початкову збіжність функції.
курсовая работа, добавлен 27.04.2014 Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.
курсовая работа, добавлен 26.12.2010Дослідження системи лінійних алгебраїчних рівнянь на стійкість. Одержання характеристичного многочлена методом Левур’є, в основу якого покладено обчислювання слідів степенів матриці А. Приклад перевірки на стійкість систему Аx=B за допомогою програми.
курсовая работа, добавлен 29.08.2010Прийняття рішень як основний компонент систем управління проектами. Методика розробки програми для знаходження множини оптимальних рішень за критерієм Байєса-Лапласа з формуванням матриці ймовірностей реалізації умов за експоненційним законом розподілу.
курсовая работа, добавлен 08.10.2010Означення і найпростіші властивості лінійних операторів. Контрольний приклад отримання власних значень. Матриця лінійного оператора. Опис та текст програми. Власні вектори й значення лінійного оператора. Теорія лінійних просторів та її застосування.
курсовая работа, добавлен 28.03.2009Розв’язання системи рівнянь методом Крамера, методом оберненої матриці та методом Гаусса. Розрахунок довжини ребра, кута між ребрами, рівняння висоти, рівняння площини грані і кута між ребром та гранню. Дослідження функції та побудува її графіку.
контрольная работа, добавлен 30.10.2011Вектори як направлені відрізки, що мають довжину, напрям і положення в таких просторах і розглядаються як вектори-стовпці. Характеристика головних операцій над векторами, їх базис та норми. Дії над матрицями та їх власні значення, принципи нормування.
презентация, добавлен 06.02.2014Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа, добавлен 20.04.2012- 21. Використання модульної арифметики. Обчислення з многочленами. Методи множення. Складність обчислень
Використання методу Монтгомері як ефективний шлях багаторазового зведення за модулем. Складність операцій з многочленами та обчислення їх значень. Алгоритм Руфіні-Горнера. Визначення рекурсивного процесу для множення. Доведення алгоритму Тоома-Кука.
контрольная работа, добавлен 07.02.2011 Лінійні методи підсумовування рядів Фур'єю, приклади трикутних та прямокутних методів. Підсумовування методом Абеля. Наближення диференційованих функцій інтегралами Абеля-Пауссона. Оцінка верхніх наближень функцій на класах в рівномірній матриці.
курсовая работа, добавлен 22.01.2013Важливість ролі власних векторів. Векторний простір і лінійний оператор в ортогональному проектуванні його на площину. Роль одновимірних інваріантних підпросторів. Вигляд матриці оператора в базисі, що складається з власних векторів цього оператора.
лекция, добавлен 19.06.2011Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.
курсовая работа, добавлен 15.09.2008Визначення гіпергеометричного ряду. Диференціальне рівняння для виродженої гіпергеометричної функції. Вироджена гіпергеометрична функція другого роду. Подання різних функцій через вироджені гіпергеометричні функції. Властивості гіпергеометричної функції.
курсовая работа, добавлен 26.01.2011