Численные методы
Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.
Подобные документы
Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.
презентация, добавлен 06.02.2014Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.
курсовая работа, добавлен 13.04.2010Нормированное пространство – одно из основных понятий функционального анализа, дифференцирование. Формула конечных приращений; связь между слабой и сильной дифференцируемостью. Абстрактные функции; интеграл; производные и дифференциалы высших порядков.
курсовая работа, добавлен 24.01.2011Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.
реферат, добавлен 27.03.2012Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа, добавлен 14.08.2010Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций, добавлен 31.05.2010Математическая формулировка задачи, существующие численные методы и схемы алгоритмов. Интерполирование функции, заданной в узлах, методом Вандермонда. Среднеквадратичное приближение функции. Вычисление интеграла функций по составной формуле трапеций.
курсовая работа, добавлен 14.04.2009Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация, добавлен 30.05.2013Задача о ханойской башне. Задача о разрезании пиццы. Задача Иосифа Флавия. Дискретная математика. Теория возвратных последовательностей - особая глава математики. Исчисление конечных разностей. Последовательности.
дипломная работа, добавлен 08.08.2007- 62. Численные методы
Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.
курс лекций, добавлен 06.03.2009 Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа, добавлен 16.12.2015Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.
курсовая работа, добавлен 14.04.2009Вычислительные методы линейной алгебры. Интерполяция функций. Интерполяционный многочлен Ньютона. Узлы интерполяции. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Коэффициенты кубических сплайнов.
лабораторная работа, добавлен 06.02.2004- 66. Численные методы
Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.
курсовая работа, добавлен 11.03.2013 Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.
курсовая работа, добавлен 28.06.2013Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.
учебное пособие, добавлен 07.05.2012- 69. Линейная алгебра
Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.
контрольная работа, добавлен 11.12.2012 Биографии и описание деятельности великих математиков: Паскаля, Бернулли, Дезарга, Ньютона, Ферма, Декарта, Эйлера, Монжа, Фурье, Лагранжа, Виета, Лейбница. Алгебраические методы в геометрии. Аналитическая геометрия Ферма. Аналитическая геометрия Декарта.
реферат, добавлен 14.01.2011Начала математической теории. Арифметика узлов, их классификация. Свойства неальтернированных узлов; преобразование Рейдемейстера. Арифметические операции с математическими узлами. Разложение составного узла. Алгоритм полного перебора с заполнением.
презентация, добавлен 13.04.2016Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.
презентация, добавлен 16.01.2015Определение дифференциальных уравнений в частных производных параболического типа. Приведение уравнения второго порядка к каноническому виду. Принцип построения разностных схем. Конечно-разностный метод решения задач. Двусторонний метод аппроксимации.
дипломная работа, добавлен 24.01.2013Определение возвратной последовательности. Формулы вычисления любого члена из нее. Характеристическое уравнение для возвратного уравнения. Исчисление конечных разностей. Обобщение произвольных возвратных последовательностей. Базис возвратного уравнения.
курсовая работа, добавлен 07.10.2009Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.
курсовая работа, добавлен 30.06.2011