Анализ модели Ван-дер-Поля
Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.
Подобные документы
Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа, добавлен 09.12.2008Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа, добавлен 14.12.2012Получение выражений для рассеянного поля и волн (падающей, отраженной, прошедшей), нахождение волнового поля внутри неоднородного цилиндрического слоя по методу Гаусса с выбором главного элемента и реализация данных алгоритмов в виде прикладной программы.
курсовая работа, добавлен 25.05.2010Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.
курсовая работа, добавлен 13.05.2015Основные формулы, используемые в исследовании. Определение стохастической устойчивости и структура соответствующих уравнений. Применение второго метода Ляпунова. Скалярные уравнения n-го порядка. Анализ устойчивости по вероятности движений спутника.
курсовая работа, добавлен 21.02.2016Возникновение и развитие числовых сравнений и сравнений высших степеней с одним неизвестным. Методы решения сравнений высшей степени с одним неизвестным. Двучленные сравнения высшей степени. Использование критерия Эйлера. Квадратичный закон взаимности.
курсовая работа, добавлен 11.09.2012Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.
курсовая работа, добавлен 20.01.2010- 108. Эйлеровы графы
Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.
презентация, добавлен 12.04.2014 Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.
курсовая работа, добавлен 07.11.2013Методика проведення операції в розширених полях. Сліди і базиси розширеного поля. Двійкове подання елементів у поліноміальному і нормальному базисах. Подання точок кривої у різних координатних системах. Складність арифметичних операцій у групах точок ЕК.
реферат, добавлен 05.02.2011Сущность графического метода нахождения оптимального значения целевой функции. Особенности и этапы симплексного метода решения задачи линейного программирования, понятие базисных и небазисных переменных, сравнение численных значений результатов.
задача, добавлен 21.08.2010- 112. Применение статистических методов для анализа эффективности экономических показателей предприятия
Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.
дипломная работа, добавлен 28.06.2011 Объединенная классификация суждений, их анализ и практическое применение круговых схем Эйлера. Установление вида сложного суждения, оценка его составных частей и составление его логической схемы. Определение формально-логического закона и его нарушений.
контрольная работа, добавлен 26.08.2011Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013- 115. Теория вероятностей
Общее решение дифференциального уравнения первого порядка. Уравнение с разделенными переменными. Выбор частного интеграла. Частное решение дифференциального уравнения второго порядка. Вероятность проявления события, интегральная формула Муавра-Лапласа.
контрольная работа, добавлен 19.08.2009 Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.
презентация, добавлен 27.10.2013Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.
реферат, добавлен 29.06.2015Изучение численно-аналитического метода решения краевых задач математической физики на примере неоднородной задачи Дирихле для уравнения Лапласа. Численная реализация вычислительного метода и вычислительного эксперимента, особенности их оформления.
практическая работа, добавлен 28.01.2014Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
курсовая работа, добавлен 14.10.2010Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация, добавлен 17.09.2013Проблеми глобальної та локальної інтерполяції за Лагранжем і Ньютоном; коливна поведінка інтерполяційного многочлена; функції Рунге. Сплайн – група пов'язаних кубічних многочленів з неперервною першою і другою похідною, переваги сплайн-інтерполяції.
презентация, добавлен 06.02.2014Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.
курсовая работа, добавлен 11.12.2013Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа, добавлен 28.11.2012Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.
задача, добавлен 20.02.2011