Численные методы
Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.
Подобные документы
Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.
дипломная работа, добавлен 13.03.2003Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.
реферат, добавлен 03.12.2007Определение дифференциальных уравнений в частных производных параболического типа. Приведение уравнения второго порядка к каноническому виду. Принцип построения разностных схем. Конечно-разностный метод решения задач. Двусторонний метод аппроксимации.
дипломная работа, добавлен 24.01.2013- 79. Теорема Дирихле
Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа, добавлен 12.08.2009 Интерполяция с помощью полинома Ньютона исходных данных. Значение интерполяционного полинома в заданной точке. Уточнение значения корня на заданном интервале тремя итерациями и поиск погрешности вычисления. Методы треугольников, трапеций и Симпсона.
контрольная работа, добавлен 06.06.2011Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.
реферат, добавлен 16.06.2009Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция, добавлен 02.06.2008Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.
курсовая работа, добавлен 10.01.2015Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.
реферат, добавлен 08.08.2009Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.
курсовая работа, добавлен 15.06.2011Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".
научная работа, добавлен 29.03.2011Аппроксимация экспериментальных зависимостей методом наименьших квадратов. Правило Крамера. Графическое отображение точек экспериментальных данных. Аномалии и допустимые значения исходных данных. Листинг программы на С++. Результаты выполнения задания.
курсовая работа, добавлен 03.02.2011Понятие нормированного пространства. Пространства суммируемых функций. Интеграл Лебега-Стилтьеса. Интерполяция в пространствах суммируемых функций. Теорема Марцинкевича и ее применение. Пространства суммируемых последовательностей.
дипломная работа, добавлен 08.08.2007Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.
методичка, добавлен 30.04.2012Теорема Піфагора - важливий інструмент геометричних обчислень, її простота, значення; історичні відомості. Теорема Піфагора на площині та у просторі, її стереометричний аналог; цілочислові прямокутні трикутники. Доведення теореми, класифікація задач.
курсовая работа, добавлен 16.05.2011Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.
курс лекций, добавлен 23.04.2011Общий вид интеграла с переменным верхним пределом, его основные свойства. Теорема о среднем, её следствие. Функция, причины ее непрерывности, доказательство, её наименьшее и наибольшее значение. Связь между неопределенным и определенным интегралом.
презентация, добавлен 18.09.2013Интеграл Фурье в комплексной форме. Формулировка теоремы о сходимости интеграла для кусочно-гладких и абсолютно интегрируемых на числовой прямой функции. Примеры нахождения преобразования Фурье, сверстка и преобразование, спектр, некоторые приложения.
курсовая работа, добавлен 27.08.2012Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.
дипломная работа, добавлен 15.12.2012Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.
реферат, добавлен 23.02.2011Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.
презентация, добавлен 20.04.2014Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.
курсовая работа, добавлен 23.07.2011Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.
контрольная работа, добавлен 26.04.2011Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Построить интерполяционный многочлен Лагранжа. Выполнить интерполяцию сплайнами третьей степени.
лабораторная работа, добавлен 06.02.2004- 100. Численные методы
Интерполяционная схема Эйткина. Связь конечных разностей и производных. Распространение ошибки исходных данных при вычислении конечные разности. Свойства разделенной разности. Интерполяционная формула Ньютона для не равноотстоящих узлов. Полином Лагранжа.
лекция, добавлен 06.03.2009