Интегралы. Функции переменных
Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.
Подобные документы
Исследование функции на четность и периодичность. Нахождение вертикальных, горизонтальных (или наклонных) асимптот, а также экстремумов и интервалов монотонности. Определение интервалов выпуклости и точки перегиба. Построение графика исследуемой функции.
презентация, добавлен 21.09.2013Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.
контрольная работа, добавлен 12.01.2011Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа, добавлен 08.07.2011Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа, добавлен 14.08.2010- 105. Замечательные кривые
Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.
дипломная работа, добавлен 14.10.2011 Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.
контрольная работа, добавлен 28.03.2014Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.
контрольная работа, добавлен 05.11.2011Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа, добавлен 23.10.2010Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.
курсовая работа, добавлен 28.09.2019- 110. Задачи по математике
Пример решения задачи на нахождение корня уравнения. Определение веса бетонного шара. Коэффициент полезного действия: понятие, формула. Нахождение значения функции. Плоскость основания цилиндра. Угол между плоскостью сечения и основания цилиндра.
контрольная работа, добавлен 27.12.2013 Метод планирования второго порядка на примере В3-плана. Получение и исследование математической модели объекта в виде полинома второго порядка. Статистический анализ полученного уравнения и построение поверхностей отклика. Расчет коэффициентов регрессии.
курсовая работа, добавлен 18.11.2010Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.
контрольная работа, добавлен 05.03.2011Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация, добавлен 18.09.2013Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа, добавлен 17.12.2010Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа, добавлен 06.01.2011- 116. Линейные функции
Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.
контрольная работа, добавлен 07.09.2010 - 117. Метод хорд
Определение понятий "хорда", "пропорциональность", "приращение функции". Доказательство теорем Ферма, Ролля и Лагранжа. Особенности и условия применения метода хорд при решении уравнений разного порядка. Ознакомление с правилом пропорциональных частей.
реферат, добавлен 25.05.2014 Сущность линейного программирования. Изучение математических методов решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Нахождение точек наибольшего или наименьшего значения функции.
реферат, добавлен 20.05.2019Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 12.06.2010Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа, добавлен 26.04.2014Общая формулировка задания на курсовой проект. Линейное программирование. Задача целочисленного линейного программирования, с булевскими переменными. Нелинейное программирование. Задача поиска глобального экстремума функции.
курсовая работа, добавлен 17.05.2006Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.
контрольная работа, добавлен 09.10.2011Уравнение прямой, проходящей через две заданные точки. Вычисление площади ромба. Разложение квадратного трехчлена на линейные множители. Нахождение производной функции и асимптот графика. Правила дифференцирования частного произведения и сложной функции.
контрольная работа, добавлен 24.04.2009Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа, добавлен 24.05.2009Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа, добавлен 24.11.2013