Симметрия. Виды симметрий
Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.
Подобные документы
Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат, добавлен 24.11.2009- 102. Комбинаторика
Сущность комбинаторики как области математики, исследующей количество и разновидности комбинаций заданных объектов в определенных условиях. Особенности и понятие комбинаторной задачи. Примеры составления комбинаторных задач и способы их решения.
презентация, добавлен 19.02.2012 История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.
курсовая работа, добавлен 16.10.2013Основные понятия теории полуколец. Определение полукольца. Примеры. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Основные свойства полуколец.
дипломная работа, добавлен 14.06.2007Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.
презентация, добавлен 21.09.2013Дискретный периодический сигнал, представленный рядом Фурье. Прямое и обратное дискретное преобразование. Его свойства: линейность и симметрия. Алгоритм вычисления круговой свертки сигналов. Равенство Парсеваля для них. Связь ДПФ с Z-преобразованием.
презентация, добавлен 19.08.2013- 107. Теория вероятности
Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат, добавлен 24.04.2009 Исторические сведения, понятия о многогранниках. Изгибаемые многогранники Коннелли. Гипотеза кузнечных мехов. Построение модели Октаэдр Брикара, Флексор Штеффена. Симметрия, объем, изгибаемость и основные свойства многогранников. Теорема Сабитова.
курсовая работа, добавлен 03.10.2010Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.
презентация, добавлен 21.09.2013Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.
реферат, добавлен 25.10.2015- 111. Поверхневі інтеграли
Суть поверхневих інтегралів першого роду, які є узагальненням подвійних інтегралів. Лист Мебіуса, як приклад односторонньої поверхні. Формула Остроградського-Гаусса, яка встановлює зв'язок між поверхневим інтегралом по замкненій поверхні. Формула Стокса.
реферат, добавлен 16.03.2011 - 112. Понятие пропорции
Определение понятия пропорции, ее крайних и средних членов и их соотношения. Примеры решения уравнений и практическое применение пропорции. Основные свойства соразмерностей и изменение положения ее членов в равенстве. Поиск неизвестного пропорции.
презентация, добавлен 15.02.2011 Основные понятия, определения, свойства и примеры банаховых алгебр, понятие идеала, доказательство леммы. Определение спектра и резольвенты. Теорема о фактор-алгебре, ее следствия. Линейные непрерывные мультипликативные функционалы и максимальные идеалы.
курсовая работа, добавлен 30.09.2011Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.
контрольная работа, добавлен 08.11.2009Формулировка основного закона динамики. Понятие и основные характеристики прямолинейного движения, формы и особенности его задания. Схема формирования и решения дифференциальных уравнений движения. Примеры решения типовых задач по данной тематике.
презентация, добавлен 26.09.2013Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.
презентация, добавлен 18.09.2013Отражение посредством математической функции связи между какими-либо значениями. Представление числовых функций на рисунках в виде графиков. Особенности алгебраической функции и многочленов. Практическое применение линейных и квадратических функций.
презентация, добавлен 07.10.2014Замечательные линии 3-го порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска. Площадь области, ограниченной лемнискатой.
курсовая работа, добавлен 07.08.2015Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.
курсовая работа, добавлен 01.10.2011История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.
курсовая работа, добавлен 12.06.2011Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.
курсовая работа, добавлен 27.04.2014Понятие и примеры шкалы отношений. Что такое стратифицированная (или расслоенная) выборка. Определение медианы и мощности критерия. Характеристика термина "процентиль". Влияние коэффициента корреляции на зависимость между исследуемыми величинами.
контрольная работа, добавлен 29.09.2010Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.
презентация, добавлен 17.09.2013- 124. Труды Эйлера
Леонард Эйлер — швейцарский, немецкий и российский математик; биография, вклад в развитие механики, физики, астрономии; автор исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
реферат, добавлен 22.12.2011 - 125. Аксиомы планиметрии
Предмет и задачи планиметрии, как раздела геометрии, в котором изучаются такие фигуры на плоскости, как точка, прямая, параллелограмм, трапеция, окружность и треугольник. Аксиомы принадлежности, расположения, измерения, откладывания, параллельности.
презентация, добавлен 22.10.2013