На чём стоит математика
Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.
Подобные документы
Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.
курсовая работа, добавлен 22.06.2015История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация, добавлен 13.05.2011Греческая математика и её философия. Взаимосвязь и совместный путь философии и математики от начала эпохи возрождения до конца XVII века. Философия и математика в эпохе Просвещения. Анализ природы математического познания немецкой классической философии.
дипломная работа, добавлен 07.09.2009Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).
лекция, добавлен 07.05.2013Как люди научились считать, возникновение цифр, чисел и систем счисления. Таблица умножения на "пальцах": методика умножения для чисел 9 и 8. Примеры быстрого счета. Способы умножения двузначного числа на 11, 111, 1111 и т.д. и трехзначного числа на 999.
курсовая работа, добавлен 22.10.2011Основные задачи при изучении курса "Высшая математика", Числовые множества: натуральные, целые, рациональные, действительные числа. Модуль числа, интервал, окрестность, отрезок, числовая ось. Аналитическая геометрия, скалярное произведение и вектор.
методичка, добавлен 26.10.2009Всем известна управляющая роль контроля. В процессе обучения контроль, присутствует на всех этапах, начиная с самых первых моментов в овладении учащимися новым материалом и до завершения темы. Учитель должен четко представлять смысл проверки знаний.
дипломная работа, добавлен 24.06.2008Расширенный алгоритм Евклида, его использование для нахождения наибольшего общего делителя натуральных чисел посредством остатков от деления. Математическая проблема календаря. Евклидовы кольца - аналоги чисел Фибоначчи в кольце многочленов, их свойства.
реферат, добавлен 25.09.2009Первоначальные элементы математики. Свойства натуральных чисел. Понятие теории чисел. Общие свойства сравнений и алгебраических уравнений. Арифметические действия со сравнениями. Основные законы арифметики. Проверка результатов арифметических действий.
курсовая работа, добавлен 15.05.2015Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.
учебное пособие, добавлен 09.03.2009Сущность и методологические проблемы математической физики. Особенности математического моделирования жёсткости прокатного калиброванного валка. Основные положения и свойства идеальной математики. Порядок устройства и структурные элементы идеальных чисел.
доклад, добавлен 10.10.2010Краткий биографический очерк жизни и деятельности Георга Кантора и Шарля Мерэ. История создания теории действительного числа, ее математическая сущность и характеристика. Определение отношения порядка. Понятие замкнутости множества вещественных чисел.
презентация, добавлен 11.06.2011Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.
реферат, добавлен 22.03.2016Высшая математика в профессиональной деятельности военного юриста. Теоретические аспекты применения методов высшей математики в военной юриспруденции, практическое использование методик. Разделы высшей математики, использующиеся в военной юриспруденции.
реферат, добавлен 28.02.2009Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.
реферат, добавлен 20.08.2015Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.
презентация, добавлен 17.09.2013Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.
курс лекций, добавлен 30.04.2010Изучение основных подгрупп алгоритмов проверки простоты больших чисел: детерминированные и вероятностные проверки. Исследование методов генерации и проверки на простоту больших чисел с помощью метода Ферма (малая теорема Ферма), составление программы.
лабораторная работа, добавлен 27.12.2010Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.
презентация, добавлен 09.10.2011Этапы развития натуральных чисел. Сущность метода "решето Эратосфена" и проблемы Гольдбаха. Свойства, законы и закономерности фигурных, многоугольных, совершенных, дружественных, компанейских цифр. Мистические представления о значениях 666 и 1001.
реферат, добавлен 18.01.2011Способы получения псевдослучайных чисел. Общая характеристика генератора псевдослучайных чисел фон Неймана. Сущность равномерного закона распределения. Понятие о критериях согласия. Анализ критериев Пирсона и Колмогорова.
курсовая работа, добавлен 28.04.2010Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.
контрольная работа, добавлен 05.10.2010Представление доказательства неравенства Чебышева. Формулирование закона больших чисел. Приведение примера нахождения математического ожидания и дисперсии для равномерно распределенной случайной величины. Рассмотрение содержания теоремы Бернулли.
презентация, добавлен 01.11.2013- 75. Теория нумераций
Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.
реферат, добавлен 16.05.2009