Неопределенный интеграл
Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.
Подобные документы
Функции нескольких переменных. Локальные экстремумы функции двух переменных. Производная по направлению. Двойные и тройные интегралы. Вычисление объемов тел и площадей плоских фигур. Тройной интеграл, криволинейные интегралы первого и второго рода.
учебное пособие, добавлен 23.04.2012Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, его компоненты, свойства. Вычисление определённого интеграла; формула Ньютона-Лейбница. Геометрические приложения: площадь, длина дуги, объем тела вращения.
презентация, добавлен 30.05.2013Разложение функции в ряд Фурье, поиск коэффициентов. Изменение порядка интегрирования, его предел. Расчет площади фигуры, ограниченной графиками функций, с помощью двойного интеграла, объема тела, ограниченного поверхностями, с помощью тройного интеграла.
контрольная работа, добавлен 28.03.2014Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа, добавлен 13.02.2013Решение системы методом Гаусса. Составление расширенной матрицу системы. Вычисление производной сложной функции, определенного и неопределенного интегралов. Область определения функции. Приведение системы линейных уравнений к треугольному виду.
контрольная работа, добавлен 27.04.2014Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.
презентация, добавлен 11.04.2013Функция многих переменных. Предел и непрерывность функции многих переменных. Частные производные. Дифференцируемость функции. Производная в направлении. Градиент. Локальные экстремумы. Интегральное исчисление функций. Неопределённный интеграл.
курс лекций, добавлен 08.04.2008Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.
презентация, добавлен 18.09.2013Изменение порядка интегрирования функции. Расчет площади фигуры, ограниченной графиками функций. Поиск предела интегрирования. Определение производной скалярного поля в точке по направлению вектора. Поиск объема тела, ограниченного поверхностями.
контрольная работа, добавлен 28.03.2014Интеграл по кривой, заданной уравнением y=y(x). Вычисление криволинейного интеграла. Кривая от точки А к В при изменении параметра. Непрерывные функции со своими производными. Отрезок параболы, заключенный между точками. Решение разными методами.
презентация, добавлен 17.09.2013Понятие непрерывности функции. Понятие, физический и геометрический смысл производной. Локальный экстремум и теорема Ферма. Теорема Ролля о нулях производных. Формула конечных приращении Лагранжа. Обобщенная формула конечных приращении (формула Коши).
курсовая работа, добавлен 17.03.2015Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа, добавлен 23.02.2011Понятие и свойства отражающей функции. Первый интеграл дифференциальной системы и условия существования. Условия возмущения дифференциальных систем, не изменяющие временных симметрий. Определение связи между первым интегралом и эквивалентными системами.
курсовая работа, добавлен 21.08.2009Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка, добавлен 22.06.2008Нормированное пространство – одно из основных понятий функционального анализа, дифференцирование. Формула конечных приращений; связь между слабой и сильной дифференцируемостью. Абстрактные функции; интеграл; производные и дифференциалы высших порядков.
курсовая работа, добавлен 24.01.2011Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.
презентация, добавлен 21.09.2013Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа, добавлен 17.12.2013Пределы функции, ее полное исследование с использованием дифференциального исчисления. Вычисление неопределенных интегралов с использованием методов интегрирования. Определенный и несобственный интегралы. Числовые ряды, их исследование на сходимость.
контрольная работа, добавлен 07.04.2013Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.
контрольная работа, добавлен 09.04.2015Нахождение произведения для заданных множеств. Вычисление предела функции с использованием основных теорем. Раскрытие неопределенности с использованием правила Лопиталя. Нахождение производной и вычисление неопределенного интеграла методом подстановки.
контрольная работа, добавлен 02.02.2011Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача, добавлен 02.10.2009Понятие и исследование функции четной, нечетной и симметричной относительной оси. Понятие интервалов знакопостоянства. Выпуклость и вогнутость, точки перегиба. Вертикальные и наклонные асимптоты. Наименьшее и наибольшее значения функции и интеграла.
практическая работа, добавлен 25.03.2011Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.
курсовая работа, добавлен 09.12.2008Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.
контрольная работа, добавлен 19.01.2010Понятие пределов функции, нахождение ее точки экстремума, промежутков возрастания и убывания. Определенный, неопределенный и несобственный интервал. Исследование степенного ряда на сходимость на концах интервала. Решение дифференциального уравнения.
контрольная работа, добавлен 01.05.2012