Теория вероятностей и математическая статистика
Статистическое, аксиоматическое и классическое определение вероятности. Дискретные случайные величины. Предельные теоремы Лапласа и Пуассона. Функция распределения вероятностей для многомерных случайных величин. Формула Байеса. Точечная оценка дисперсии.
Подобные документы
Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа, добавлен 26.02.2012Определение вероятности брака проверяемых конструкций. Расчет вероятности того, что из ста новорожденных города N доживет до 50 лет. Расчет математического ожидания и дисперсии. Определение неизвестной постоянной С и построение графика функции р(х).
курсовая работа, добавлен 27.10.2011Условия неограниченного приближения закона распределения суммы n независимых величин к нормальному закону распределения. Сущность центральной предельной теоремы. Определение с помощью теоремы Муавра-Лапласа вероятности наступления события в серии опытов.
презентация, добавлен 01.11.2013Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.
лабораторная работа, добавлен 19.08.2002История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа, добавлен 20.12.2009Вычисление математического ожидания, дисперсии и коэффициента корреляции. Определение функции распределения и его плотности. Нахождение вероятности попадания в определенный интервал. Особенности построения гистограммы частот. Применение критерия Пирсона.
задача, добавлен 17.11.2011Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.
курсовая работа, добавлен 23.12.2012Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.
презентация, добавлен 01.11.2013Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.
презентация, добавлен 20.09.2014- 85. Закон больших чисел. Проверка статистических гипотез (критерий согласия w2 Мизеса: простая гипотеза)
Предельные теоремы теории вероятностей. Сходимость последовательностей случайных величин и вероятностных распределений. Метод характеристических функций. Закон больших чисел. Особенности проверки статистических гипотез (критерия согласия w2 Мизеса).
курсовая работа, добавлен 27.01.2012 Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.
контрольная работа, добавлен 03.01.2012Исследования Дж. Кардано и Н. Тарталья в области решения первичных задач теории вероятностей. Вклад Паскаля и Ферма в развитие теории вероятностей. Работа Х. Гюйгенса. Первые исследования по демографии. Формирование понятия геометрической вероятности.
курсовая работа, добавлен 24.11.2010Программа курса, основные понятия и формулы теории вероятностей, их обоснование и значение. Место и роль математической статистики в дисциплине. Примеры и разъяснения по решению самых распространенных задач по различным темам данных учебных дисциплин.
методичка, добавлен 15.01.2010Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка, добавлен 25.12.2010Определение вероятности потери в ожесточенном бою одновременно глаза, рук, ноги; выбор возможных вариантов женитьбы; выигрыша, смерти. Расчет максимальной страховой риск компании и не оказаться в убытке.
контрольная работа, добавлен 06.01.2011Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.
презентация, добавлен 17.08.2015Теория вероятностей: биноминальный закон, закон Пуассона. Задачи. Независимо друг от друга 10 чел. Садятся в поезд, содержащий 15 вагонов. Вероятность того, что все они поедут в разных вагонах?
лабораторная работа, добавлен 07.10.2002Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция, добавлен 02.04.2008Математическое ожидание дискретной случайной величины, его свойства и определение. Дисперсия и формула для ее вычисления. Среднее квадратическое отклонение. Ковариация и коэффициент корреляции. Коррелированные и некоррелированные случайные величины.
курсовая работа, добавлен 05.06.2011Бесконечное число возможных значений непрерывных случайных величин. Рассмотрение непрерывной случайной величины Х с функцией распределения F(x). Кривая, изображающая плотность вероятности. Определение вероятности попадания на участок a до b через f(x).
презентация, добавлен 01.11.2013Область определения функции, которая содержит множество возможных значений. Нахождение закона распределения и характеристик функции случайной величины, если известен закон распределения ее аргумента. Примеры определения дискретных случайных величин.
презентация, добавлен 01.11.2013Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.
курсовая работа, добавлен 31.05.2010Система кривых Пирсона. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Примеры нахождения кривых распределения вероятностей и программное обеспечение.
дипломная работа, добавлен 13.03.2003Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация, добавлен 01.11.2013Особенности использования теории вероятностей в сфере транспорта. Сравнительный анализ вероятностей катастрофы летательного аппарата: постановка задачи и ее математическая интерпретация. Определение надежности элементов системы энергоснабжения самолета.
контрольная работа, добавлен 11.09.2014