Розв’язування звичайних диференціальних рівнянь. Багатокрокові методи
Класифікація методів для задачі Коші. Лінійні багатокрокові методи. Походження формул Адамса. Різницевий вигляд методу Адамса. Метод Рунге-Кутта четвертого порядку. Підвищення точності обчислень методу за рахунок подвійного обчислення значення функції.
Подобные документы
- 101. Складність методів вирішення проблеми дискретного логарифмування в групі точок еліптичної кривої
Використання методу Полларда для вирішення проблеми дискретного логарифмування, його складність і час обчислення рішення ECDLP. Аномальні криві й криві над розширеннями малого поля. MOV-атака та суперсингулярні криві над полем F. Метод спуску Вейля.
реферат, добавлен 21.02.2011 Основні типи та види моделей. Основні методи складання початкового опорного плану. Поняття потенціалу й циклу. Критерій оптимальності базисного рішення транспортної задачі. Методи відшукання оптимального рішення. Задача, двоїста до транспортного.
курсовая работа, добавлен 27.01.2011Процес розповсюдження тепла в стержні методом розділення змiнних. Застосування методу Фур’є розділення змінних для розв’язання поставленої нестацiонарної задачі теплопровiдностi. Теорема про нагрітий стержень з нульовими температурами в кінцевих точках.
курсовая работа, добавлен 10.04.2016- 104. Потрійний інтеграл
Характеристика та поняття потрійного інтеграла, умови його існування та основні властивості. Особливості схеми побудови та обчислення потрійного інтегралу, його застосування для розв’язання рівнянь. Правило заміни змінних в потрійному інтегралі.
контрольная работа, добавлен 23.03.2011 Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа, добавлен 13.03.2013Означення та приклади застосування гармонічних функцій. Субгармонічні функції та їх деякі властивості. Розв’язок задачі Діріхле з використанням функції Гріна. Теореми зростання та спадання функції регулярної в нескінченній області (Фрагмена-Ліндельофа).
курсовая работа, добавлен 10.09.2013Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
контрольная работа, добавлен 22.01.2011Розв'язання графічним методом математичної моделі задачі з організації випуску продукції. Розв'язання транспортної задачі методом потенціалів. Знаходження умовних екстремумів функцій методом множників Лагранжа. Розв'язання задач симплекс-методом.
контрольная работа, добавлен 16.07.2010Постановка задачі оптимального керування. Дослідження принципу максимуму Понтрягiна для систем диференціальних рiвнянь. Розрахунок значення фондоозброєності, продуктивності праці і питомого споживання. Моделювання оптимального економічного зростання.
курсовая работа, добавлен 21.04.2015Лінійні методи підсумовування рядів Фур'єю, приклади трикутних та прямокутних методів. Підсумовування методом Абеля. Наближення диференційованих функцій інтегралами Абеля-Пауссона. Оцінка верхніх наближень функцій на класах в рівномірній матриці.
курсовая работа, добавлен 22.01.2013Застосування систем рівнянь хемотаксису в математичній біології. Виведення системи визначальних рівнянь, розв'язання отриманої системи визначальних рівнянь (симетрій Лі). Побудова анзаців максимальних алгебр інваріантності математичної моделі хемотаксису.
дипломная работа, добавлен 09.09.2012Методика визначення всіх коренів нелінійного рівняння різними способами: відрізка пополам, хорд, дотичних та ітерацій. Особливості та принципи застосування комп’ютерних технологій в даному процесі. Аналіз отаманих результатів і їх інтерпретація.
лабораторная работа, добавлен 15.12.2015Скалярне множення або експоненціювання точки кривої у криптографічних алгоритмах. Методи вікон з алгоритмом подвоєння – додавання – віднімання. Метод еспоненціювання Монтгомері. Методи експоненціювання при фіксованій точці. Алгоритм максимальної пам'яті.
контрольная работа, добавлен 07.02.2011Решение системы линейных уравнений по методу определителей, методом исключения (Гаусса), по методу Жордана и Холецкого. Определение недостатков и достоинств всех методов. Условия совместности и определенности системы в зависимости от коэффициентов.
контрольная работа, добавлен 02.05.2012Проблема формування конструктивно-геометричних умінь та навичок учнів в старшій профільній школі. Поняття геометричних побудов; паралельне і центральне проектування та їх властивості. Основні типи задач в стереометрії та методи їх розв’язування.
дипломная работа, добавлен 11.02.2014Розгляд нових методів екстримізації однієї змінної. Типи задач, які існують для розв’язування задач мінімізації на множині Х. Золотий поділ відрізка на дві неоднакові частини, дослідження його на стійкість. Алгоритм, текст програми, результат роботи.
курсовая работа, добавлен 01.04.2011Розгляд програми вивчення паралельності прямих у просторі. Аналіз викладення теми конструювання геометричних тіл та дослідження їхніх властивостей у шкільних підручниках геометрії. Методика навчання учнів теоретичного матеріалу та розв’язування завдань.
курсовая работа, добавлен 26.03.2014Загальна характеристика системи Moodle. Поняття кільця та його найпростіші властивості. Алгебраїчна форма запису комплексного числа. Основні типи бінарних відношень. Властивості операцій над множинами. Лінійні комбінації і лінійні оболонки векторів.
дипломная работа, добавлен 26.02.2014Таблиця формул основних інтегралів. Методи обчислення площі плоскої фігури в декартових координатах. Означення потрійного інтеграла. Знаходження площі фігури обмеженої лініями, розрахунок обсягу просторового тіла. Властивості визначеного інтеграла.
презентация, добавлен 23.02.2013Максимуми і мінімуми в природі (оптика). Завдання на оптимізацію. Варіаційні методи розв’язання екстремальних задач. Найбільш відомі екстремальні задачі в геометрії: задача Дідони, Евкліда, Архімеда, Фаньяно, Ферма-Торрічеллі-Штейнера та Штейнера.
курсовая работа, добавлен 12.09.2014Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа, добавлен 13.06.2012Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.
методичка, добавлен 30.04.2014Лінійні різницеві рівняння зі сталими коефіцієнтами. Теоретичне дослідження основних теорій інваріантних тороїдальних многовидів для зліченних систем лінійних і нелінійних різницевих рівнянь, що визначені на скінченновимірних та нескінченновимірних торах.
курсовая работа, добавлен 18.12.2013Вивчення теоретичних положень про симетричні многочлени і їх властивості: загальне поняття і характеристика властивостей. Математичне вживання симетричних многочленів: розв'язування систем рівнянь, доведення тотожності, звільнення від ірраціональності.
курсовая работа, добавлен 04.04.2011Побудова сіткової функції при чисельному інтегруванні по заданій підінтегральній функції. Визначення формул прямокутників та трапецій; оцінка їх похибок. Використання методики інтегрування за методом трапецій для обчислення визначеного інтеграла.
презентация, добавлен 06.02.2014