Критерий согласия Пирсона

Основные понятия математической статистики, интервальные оценки. Метод моментов и метод максимального правдоподобия. Проверка статистических гипотез о виде закона распределения при помощи критерия Пирсона. Свойства оценок, непрерывные распределения.

Подобные документы

  • Методы составления закона распределения случайной величины. Вычисление средней арифметической и дисперсии распределения. Расчет средней квадратической ошибки бесповторной выборки. Построение эмпирических линий регрессии, поиск уравнения прямых регрессий.

    контрольная работа, добавлен 20.07.2010

  • Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.

    контрольная работа, добавлен 14.11.2010

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат, добавлен 23.01.2011

  • Теория малых упругопластических деформаций. Метод последовательных приближений. Метод упругих решений. Подход, основанный на методе дополнительных нагрузок. Теория пластического течения. Упругость объемной деформации. Критерий упрочнения Д. Дракера.

    презентация, добавлен 17.07.2015

  • Числовые характеристики случайной функции: математическое ожидание, дисперсия, квадрат разности, корреляционная функция. Расчет среднего выборочного и несмещенной выборочной дисперсии, проверка гипотезы о нормальном распределении по критерию согласия.

    контрольная работа, добавлен 02.06.2010

  • Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.

    презентация, добавлен 01.11.2013

  • Опис одного з поширених ітераційних методів, методу хорда — ітераційного методу знаходження кореня рівняння, який ще має назви метод лінійного інтерполювання, метод пропорційних частин, або метод хибного положення. Задачі для самостійного розв’язування.

    реферат, добавлен 04.12.2010

  • Особенности функции распределения как самой универсальной характеристики случайной величины. Описание ее свойств, их представление с помощью геометрической интерпретации. Закономерности вычисления вероятности распределения дискретной случайной величины.

    презентация, добавлен 01.11.2013

  • Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.

    контрольная работа, добавлен 29.01.2014

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа, добавлен 25.03.2015

  • Методы определения достоверного значения измеряемой физической величины и его доверительных границ, используя результаты многократных наблюдений. Проверка соответствия экспериментального закона распределения нормальному закону. Расчет грубых погрешностей.

    контрольная работа, добавлен 14.12.2010

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа, добавлен 15.08.2012

  • Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.

    курсовая работа, добавлен 23.05.2013

  • Основные виды линейных интегральных уравнений. Метод последовательных приближений, моментов, наименьших квадратов и коллокации. Решение интегральное уравнение методом конечных сумм и методом моментов. Ненулевые решения однородной линейной системы.

    контрольная работа, добавлен 23.10.2013

  • Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.

    курсовая работа, добавлен 31.05.2010

  • Составление математической модели задачи. Определение всевозможных способов распила 5-метровых бревен на брусья 1,5, 2,4, 3,2 в отношении 1:2:3 так, чтобы минимизировать общую величину отходов. Решение задачи линейного программирования симплекс-методом.

    задача, добавлен 27.11.2015

  • Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.

    курсовая работа, добавлен 13.12.2012

  • Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.

    контрольная работа, добавлен 13.12.2010

  • Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.

    презентация, добавлен 11.04.2013

  • События и случайные величины. Функция распределения и ее характерные свойства. Сущность и определение основных числовых характеристик случайных величин: математическое ожидание, дисперсия, моменты. Критерии и факторы, влияющие на их формирование.

    контрольная работа, добавлен 30.01.2015

  • Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.

    курсовая работа, добавлен 13.11.2012

  • Первичная обработка статистических данных по количеству зарегистрированных абонентских терминалов сотовой связи за 2008 год на 1000 населения в регионах России. Интервальное оценивание параметров. Гипотеза о виде распределения. Регрессионный анализ.

    курсовая работа, добавлен 06.10.2013

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа, добавлен 24.06.2009

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация, добавлен 21.09.2013

  • Основные понятия, которые касаются центральной предельной теоремы для независимых одинаково распределенных случайных величин и проверки статистических гипотез. Анализ сходимости последовательностей случайных величин и вероятностных распределений.

    курсовая работа, добавлен 13.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.