Решение матричных уравнений
Базовые действия над матрицами. Решение матричных уравнений с помощью обратной матрицы и с помощью элементарных преобразований. Понятия обратной и транспонированной матриц. Решение матричных уравнений различных видов: АХ=В, ХА=В, АХВ=С, АХ+ХВ=С, АХ=ХА.
Подобные документы
Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
курсовая работа, добавлен 21.12.2009Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат, добавлен 12.08.2009Понятия, связанные с рядами и дифференциальными уравнениями. Необходимый признак сходимости. Интегрирование дифференциальных уравнений с помощью рядов. Уравнение Эйри и Бесселя. Примеры интегрирования в Maple. Приближенные вычисления с помощью рядов.
курсовая работа, добавлен 11.12.2013Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа, добавлен 14.01.2015Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.
материалы конференции, добавлен 13.03.2009Ознакомление с основными элементами управления редактора Matlab. Выполнение элементарных вычислений с помощью данной программной системы. Структура справочной системы, принципы ее функционирования. Решение системы линейных уравнений в матричном виде.
лабораторная работа, добавлен 20.09.2015Матричный метод решения систем линейных алгебраических уравнений с ненулевым определителем. Примеры вычисления определителя матрицы. Блок-схема программы, описание объектов. Графический интерфейс, представляющий собой стандартный набор компонентов Delphi.
курсовая работа, добавлен 29.06.2014Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.
контрольная работа, добавлен 13.03.2012- 109. Математика
Математика и информатика. Решение системы линейных алгебраических уравнений методом Крамера. Работа в текстовом редакторе MS WORD. Рисование с помощью графического редактора. Определение вероятности. Построение графика функции с помощью MS Excel.
контрольная работа, добавлен 10.01.2009 Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств. Степенные и показательные функции и их свойства. Опыт проведения занятий со школьниками по теме: "Решение показательно-степенных уравнений и неравенств".
дипломная работа, добавлен 24.11.2007Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.
учебное пособие, добавлен 23.04.2009Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.
презентация, добавлен 22.11.2014Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа, добавлен 18.11.2013Понятие матрицы и ее основные элементы. Пример нахождения ее ранга путем приведения к ступенчатому виду. Описание действий над матрицами. Разбор умножения их на примере. Особенности алгебраического дополнения. Алгоритм определения обратной матрицы.
презентация, добавлен 15.09.2014Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.
контрольная работа, добавлен 27.04.2011Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа, добавлен 08.05.2009Классификация гиперболических уравнений в общей классификации уравнений математической физики. Классификация уравнений: волновое, интегро-дифференциальные, уравнение теплопроводности. Методы решения в зависимости от видов гиперболических уравнений.
контрольная работа, добавлен 19.01.2009Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа, добавлен 27.11.2010Основные этапы и принципы решения системы линейных уравнений с помощью метода Крамара, обратной матрицы. Разрешение матричного уравнения. Вычисление определителя. Расчет параметров пирамиды: длины ребра, площади грани, объема, а также уравнения грани.
контрольная работа, добавлен 06.09.2015Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.
реферат, добавлен 10.11.2009Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.
презентация, добавлен 31.05.2019Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.
учебное пособие, добавлен 06.11.2011Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.
курсовая работа, добавлен 07.02.2016Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 12.06.2010