Численное решение краевых задач для обыкновенных дифференциальных уравнений. Метод стрельбы
Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
Подобные документы
Простейшая разностная схема для задачи Дирихле: построение, аппроксимация и устойчивость. Описания метода установления. Анализ алгоритмов, реализующих метод установления: решение в виде конечного ряда Фурье, схема установления и переменных направлений.
курсовая работа, добавлен 25.11.2011Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.
курсовая работа, добавлен 14.02.2010Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация, добавлен 18.04.2013Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.
курсовая работа, добавлен 31.05.2016Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
курсовая работа, добавлен 26.05.2010Решение дифференциальных уравнений в частных производных. Метод минимальных невязок, минимальных поправок, скорейшего спуска, сопряженных градиентов. Алгоритмы и блок-схемы решения. Руководство пользователя программы. Решение системы с матрицей.
курсовая работа, добавлен 21.01.2014Формирование системы их пяти уравнений по заданным параметрам, ее решение методом Гаусса с выбором главного элемента. Интерполяционный многочлен Ньютона. Численное интегрирование. Решение нелинейных уравнений. Метод Рунге-Кутта четвертого порядка.
контрольная работа, добавлен 27.05.2013Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.
курсовая работа, добавлен 17.07.2014Уравнения параболического типа. Разностные схемы для уравнения теплопроводности, задача Коши. Явная и неявная разностные схемы. Применение двухслойных разностных шаблонов. Устойчивость двухслойных разностных схем. Решение задач методом прогонки.
лекция, добавлен 28.06.2009Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.
курсовая работа, добавлен 14.09.2010Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа, добавлен 09.02.2012Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача, добавлен 21.08.2010Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат, добавлен 10.08.2010Данный электронный учебник по математике предназначен для изучения темы "Использование неравенств при решении олимпиадных задач". Постановка и реализация задачи. Теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли.
научная работа, добавлен 12.12.2009Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.
курсовая работа, добавлен 23.12.2010Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа, добавлен 14.01.2015Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.
реферат, добавлен 10.09.2009Постановка начально-краевых задач фильтрации суспензии с нового кинетического уравнения при учете динамических факторов различных режимов течения. Построение алгоритмов решения задач, составление программ расчетов, получение численных результатов на ЭВМ.
диссертация, добавлен 19.06.2015Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.
курсовая работа, добавлен 22.10.2014Алгоритм конструирования: выделение опорных утверждений, решение задачи, выбор утверждений для перефразировки и их изменение, перефразировка, решение полученной задачи. Обобщение. Конструкция. Частный случай. Перефразировка. Варьирование условий.
реферат, добавлен 14.10.2002Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.
контрольная работа, добавлен 27.04.2011Задачи и методы линейной алгебры. Свойства определителей и порядок их вычисления. Нахождение обратной матрицы методом Гаусса. Разработка вычислительного алгоритма в программе Pascal ABC для вычисления определителей и нахождения обратной матрицы.
курсовая работа, добавлен 01.02.2013Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.
дипломная работа, добавлен 01.10.2011Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).
презентация, добавлен 30.10.2013Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа, добавлен 27.05.2008