Начертательная геометрия
Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.
Подобные документы
Развитие аналитического, логического, конструктивного мышления учащихся и формирование их математической зоркости. Изучение тригонометрии в курсе геометрии основной школы, методы решения нестандартных задач из курса 8 класса и из альтернативных учебников.
курсовая работа, добавлен 01.03.2014Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.
учебное пособие, добавлен 07.01.2012Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.
дипломная работа, добавлен 24.06.2015Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация, добавлен 12.04.2015Содержание и методика преподавания математики в сельской школе. Факультатив, как одна из форм проведения внеклассной работы по геометрии. Факультативные занятия по теме "Решение задач на местности". Задачи на местности для учащихся сельской школы.
дипломная работа, добавлен 01.12.2007Геометрия на Востоке. Греческая геометрия. Геометрия новых веков. Классическая геометрия XIX века. Неевклидовая геометрия. Геометрия XX века. Современная геометрия во многих своих дисциплинах выходит далеко за пределы классической геометрии.
реферат, добавлен 14.07.2004Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат, добавлен 16.01.2010Логическое строение курса геометрии основной школы. Альтернативные учебники. Аксиоматический метод в курсе геометрии. Методика ознакомления учащихся школы с логическим строением курса планиметрии. Методика преподавания математики в средней школе.
курсовая работа, добавлен 20.03.2016Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).
реферат, добавлен 06.03.2009Происхождение и основные понятия сферической геометрии. Принципы и особенности дистанционного обучения. Процесс дистанционного обучения. Основные модели дистанционного обучения. Роль преподавателя. Дистанционный курс по "Сферической геометрии".
дипломная работа, добавлен 23.12.2007Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.
курсовая работа, добавлен 04.11.2015Характеристика истории происхождения и этапов развития геометрии – одной из самых древних наук, чей возраст исчисляется тысячелетиями, и в которой много формул, задач, теорем, фигур, аксиом. Основные умения и понимания древних египтян в сфере геометрии.
презентация, добавлен 23.03.2011Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций, добавлен 18.12.2009Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа, добавлен 13.02.2010Геометрия как научная дисциплина, причины и предпосылки, история и основные этапы ее возникновения и развития. Евклид как основатель геометрии, его вклад в развитие новой науки, характеристика, содержание ее главных разделов - планиметрии и стереометрии.
презентация, добавлен 28.12.2010Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.
презентация, добавлен 06.05.2010История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.
курсовая работа, добавлен 15.03.2011Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.
дипломная работа, добавлен 11.01.2011Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.
реферат, добавлен 10.08.2014Этапы развития теории описания пространства, сущность принципа относительности, сформулированного Галилеем. Геометрия Минковского как описание пространства – времени, основные понятия ее описания. Разработка практических занятий по данным темам.
дипломная работа, добавлен 24.02.2010Основные математические постулаты Эвклида. Попытки математиков доказать пятый постулат "О параллельности" как теорему. Основные подходы к подходов к построению гиперболической геометрии, ее содержание, примеры и отличие от эвклидовой аксиоматики.
контрольная работа, добавлен 25.06.2009Теоретические основы аналитической геометрии, линейной алгебры и задач оптимизации. Общая характеристика плоскости и основных поверхностей второго порядка. Особенности решения систем линейных уравнений с использованием меню "Мастер функций" MS Excel.
методичка, добавлен 05.07.2010- 23. Разработка методических рекомендаций решения некоторых стереометрических задач векторным методом
Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.
практическая работа, добавлен 15.12.2013 Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.
дипломная работа, добавлен 21.08.2011Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.
презентация, добавлен 19.01.2014