Метод наближеного обчислення коренів. Програма

Межі дійсних коренів. Опис та текст програми. Методи наближеного пошуку меж та самих коренів многочлена з дійсними коренями. Метод пошуку точних значень многочленів з числовими коефіцієнтами. Контрольний приклад находження відрізків додатних коренів.

Подобные документы

  • Поняття та зміст математики як наукового напрямку, предмет та методи її вивчення. Характеристика праць та біографічні відомості вчених. Аналіз потенціальних можливостей вітчизняної науки. Метод радикального сумніву у філософії та механіцизму у фізиці.

    презентация, добавлен 04.11.2013

  • Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.

    курсовая работа, добавлен 15.08.2012

  • Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.

    учебное пособие, добавлен 08.02.2010

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа, добавлен 16.12.2008

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа, добавлен 16.02.2015

  • Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.

    реферат, добавлен 19.08.2015

  • Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.

    курсовая работа, добавлен 20.12.2002

  • Метод сеток (конечных разностей) - вид численного анализа. Расчет стержней и пластин на прочность, устойчивость и колебания. Формулы для приближенного вычисления производных от функций переменных, расчет упругих систем и разномерных краевых задач.

    учебное пособие, добавлен 30.12.2011

  • Використання методу Полларда для вирішення проблеми дискретного логарифмування, його складність і час обчислення рішення ECDLP. Аномальні криві й криві над розширеннями малого поля. MOV-атака та суперсингулярні криві над полем F. Метод спуску Вейля.

    реферат, добавлен 21.02.2011

  • Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".

    реферат, добавлен 04.08.2010

  • Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.

    курсовая работа, добавлен 01.10.2009

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа, добавлен 18.05.2019

  • Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.

    презентация, добавлен 11.04.2013

  • Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.

    контрольная работа, добавлен 13.03.2012

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа, добавлен 13.04.2010

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа, добавлен 26.12.2012

  • Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.

    курсовая работа, добавлен 30.09.2012

  • Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.

    контрольная работа, добавлен 22.01.2011

  • Метод найменших квадратів. Задача про пошуки параметрів. Означення метода найменших квадратів. Визначення параметрів функціональних залежностей. Вид нормальної системи Гауса. Побудова математичної моделі, використовуючи метод найменших квадратів.

    реферат, добавлен 25.12.2010

  • Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.

    курсовая работа, добавлен 10.06.2014

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция, добавлен 14.12.2010

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа, добавлен 26.04.2014

  • Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.

    курсовая работа, добавлен 18.06.2015

  • Характерні особливості застосування визначених і подвійних інтегралів, криволінійних і поверхневих інтегралів першого роду для обчислення статичних моментів, моментів сили та моментів матеріальної поверхні. Приклади знаходження вказаних фізичних величин.

    реферат, добавлен 29.06.2011

  • Понятие линейного программирования и его основные методы. Формулировка задачи линейного программирования в матричной форме и ее решение различными методами: графическим, табличным, искусственного базиса. Особенности решения данной задачи симплекс-методом.

    курсовая работа, добавлен 30.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.