Представление групп Лиевского типа
Операция умножения матриц на примере. Сложение линейных операторов, главные свойства. Определение групп Ли, линейные и индуцированные представления. Сущность понятия "унитарный трюк". Ассоциативная алгебра с полимиальным тождеством. Радикал Джекобсона.
Подобные документы
Основные понятия и определения. * - алгебры. Представления. Тензорные произведения. Задача о двух ортопроекторах. Два ортопроектора в унитарном пространстве, в сепарабельном гильбертовом пространстве. Спектр суммы двух ортопроекторов.
дипломная работа, добавлен 04.06.2002Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа, добавлен 26.09.2009Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
дипломная работа, добавлен 18.09.2009Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа, добавлен 10.04.2014Интерпретация ортогональной и унитарной матрицы. Основные детерминанты матриц. Определение комплексных квадратных невырожденных и вырожденных матриц. Методы нахождения определителя. Метод конденсации Доджсона. Кососимметричная полилинейная функция строк.
курсовая работа, добавлен 04.06.2015Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
лекция, добавлен 02.06.2008- 33. Линейная алгебра
Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.
презентация, добавлен 14.11.2014 Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат, добавлен 12.08.2009Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа, добавлен 05.05.2010Описание ненильпотентных групп с перестановочными обобщенно максимальными подгруппами. Изучение групп с Х-перестановочными I-максимальными подгруппами. Особенности групп, в которых 2-максимальные подгруппы перестановочны с 3-максимальными подгруппами.
курсовая работа, добавлен 02.03.2010Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа, добавлен 27.03.2011Основные формы мышления: понятия, суждения, умозаключения. Сочинение Джорджа Буля, в котором подробно исследовалась логическая алгебра. Значение истинности (т.е. истинность или ложность) высказывания. Логические операции инверсии (отрицания) и конъюнкции.
презентация, добавлен 14.12.2016Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.
курсовая работа, добавлен 10.04.2011Определение линейного оператора. Непрерывные линейные операторы в нормированном пространстве. Ограниченность и норма линейного оператора. Обратный оператор. Спектр оператора и резольвента. Операторы: умножения на непрерывную функцию; интегрирования; сдвиг
дипломная работа, добавлен 27.05.2008Раздел математики, непосредственно относящийся к задачам физической и инженерной практики. Элементы векторной и линейной алгебры; описание способов выполнения различных операций над векторами: сложение, вычитание, геометрически смешанное произведение.
презентация, добавлен 02.05.2012Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.
курсовая работа, добавлен 06.06.2012Назначение, состав и структура арифметическо-логических устройств, их классификация, средства представления. Принципы построения и функционирования АЛУ ЭВМ. Создание блок-схемы алгоритма умножения, определение набора управляющих сигналов, схемное решение.
курсовая работа, добавлен 25.10.2014Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат, добавлен 14.08.2009Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.
контрольная работа, добавлен 12.12.2013Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие, добавлен 04.03.2010Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.
контрольная работа, добавлен 09.10.2011Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа, добавлен 22.09.2009Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа, добавлен 19.04.2011