Метод наименьших квадратов

Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

Подобные документы

  • Основные понятия оптимизационных задач. Нахождение наибольших или наименьших значений многомерных функций в заданной области. Итерационные процессы с учетом градиента. Функционал для градиентного равенства и применение его в задачах условной оптимизации.

    реферат, добавлен 15.08.2009

  • Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.

    контрольная работа, добавлен 30.03.2015

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа, добавлен 24.10.2010

  • Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.

    курсовая работа, добавлен 04.05.2014

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа, добавлен 30.04.2011

  • Нахождение уравнения гиперболы при заданном значении вещественной полуоси. Вычисление предела функции и ее производных. Составление уравнения нормали к кривой. Решение системы алгебраических уравнений методом Гаусса и при помощи формулы Крамера.

    контрольная работа, добавлен 12.10.2014

  • Изучение булевых функций. Алгоритм представления булевых функций в виде полинома Жегалкина. Система функций множества. Алгебраические преобразования, метод неопределенных коэффициентов. Таблица истинности для определенного количества переменных.

    курсовая работа, добавлен 27.04.2011

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция, добавлен 14.12.2010

  • Определение констант нуля и установление эквивалентности линейных функций при помощи таблицы истинности. Нахождение минимальной дизъюнктивной нормальной формы функции с помощью метода неопределенных коэффициентов. Преобразование функции методом Квайна.

    контрольная работа, добавлен 05.07.2014

  • Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.

    лабораторная работа, добавлен 23.07.2012

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа, добавлен 21.10.2011

  • Задача о малых колебаниях. Вычисление коэффициентов с помощью быстрого преобразования Фурье. Дискретный подход к вычислению коэффициентов. Вычисление методом Лежандра-Гаусса. Расчет узлов и весовых коэффициентов. Массивно-параллельный расчёт амплитуд.

    курсовая работа, добавлен 20.07.2015

  • Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.

    дипломная работа, добавлен 16.12.2008

  • Решение системы уравнений методом Гаусса и с помощью встроенной функции; матричным методом и с помощью вычислительного блока Given/Find. Нахождение производных. Исследование функции и построение её графика. Критические точки и интервалы монотонности.

    контрольная работа, добавлен 16.12.2013

  • Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.

    реферат, добавлен 10.09.2009

  • Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.

    контрольная работа, добавлен 12.06.2011

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа, добавлен 24.09.2014

  • Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.

    курсовая работа, добавлен 10.07.2012

  • Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.

    курсовая работа, добавлен 12.10.2009

  • Расчет денежных расходов предприятия на выпуск изделий, при выражении их стоимости при помощи матриц. Проверка совместимости системы уравнений и их решение по формулам Крамера и с помощью обратной матрицы. Решение алгебраических уравнений методом Гаусса.

    контрольная работа, добавлен 28.09.2014

  • Определение значения заданной функции в указанной точке при помощи интерполяционной схемы Эйткина. Проверка правильности данного решения с помощью кубического сплайна. Практическая реализация данного задания на языке Pascal и при помощи таблиц Excel.

    курсовая работа, добавлен 29.08.2010

  • Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.

    контрольная работа, добавлен 19.01.2014

  • Матричные уравнения, их решение и проверка. Собственные числа и собственные векторы матрицы А. Решение системы методом Жорданa-Гаусса. Нахождение пределов и производных функции, ее градиент. Исследование функции методами дифференциального исчисления.

    контрольная работа, добавлен 10.02.2011

  • Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа, добавлен 30.04.2011

  • Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.

    курсовая работа, добавлен 17.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.