Алгоритмы заполнения с затравкой
Внутренне-определенная и гранично-определенная область, окрас пикселов внутренней и внешней части. Общее описание простого алгоритма заполнения с затравкой: формальное изложение, главные недостатки. Общее понятие о построчном алгоритме заполнения.
Подобные документы
Бутылка Клейна – определенная неориентируемая поверхность первого рода, поверхность, у которой нет различия между внутренней и внешней сторонами. Связь бутылки Клейна с лентой Мебиуса. Получение бутылки Клейна. Построение бесконечной серии многообразий.
курсовая работа, добавлен 20.12.2011- 2. Спектр графа
Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.
дипломная работа, добавлен 05.06.2014 Варианты выбора геометрической фигуры для заполнения плоскости "без просветов". Задача царицы Дидоны. Геометрия воскового кружева пчелиных сот. Модель пчелиной соты. Использование математических принципов "пчелиной" технологии в различных областях.
реферат, добавлен 06.12.2013- 4. Гипербола
Общее понятие и признаки гиперболы. Асимптоты гиперболы как прямые, проходящие через начало координат и имеющие угловые коэффициенты. Общее понятие и формула эксцентриситета как отношения фокусного расстояния к длине действительной оси гиперболы.
презентация, добавлен 21.09.2013 Сущность моделирования, его главные цели задачи. Конструктивная схема и общее описание исследуемой трансмиссии. Алгоритм реализации задачи и ее программная реализация. Результаты расчета и их анализ. Исследование характеристик полученной модели.
курсовая работа, добавлен 01.01.2014Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат, добавлен 24.04.2009Запрещенные комбинации выходных сигналов. Методика получения минимальных ДНФ неполностью определенных переключательных функций. Импликантная матрица. Алгоритм получения минимальных конъюнктивных форм. Выходные сигналы на запрещенных комбинациях.
контрольная работа, добавлен 09.10.2008Общее понятие вектора и векторного пространства, их свойства и дополнительные структуры. Графический метод в решении задачи линейного программирования, его особенности и область применения. Примеры решения экономических задач графическим способом.
курсовая работа, добавлен 14.11.2010Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Влияние способа перехода от системы F(x)=x к системе x=ф(x) на точность полученного решения. Общее описание программного обеспечения и алгоритмов. Функциональное назначение программы. Программный модуль metod1.m и metod2.m. Описание тестовых задач.
курсовая работа, добавлен 27.04.2011Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
курсовая работа, добавлен 08.06.2013Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013- 13. Трисекция угла
Задача о делении угла на три равные части (трисекция угла), история ее происхождения. Построение трисектрисы угла (лучей, делящих угол) с помощью циркуля и линейки. Общее доказательство о трисекции угла, зависимость между ней и антипараллелограммом.
реферат, добавлен 12.12.2009 Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.
курсовая работа, добавлен 15.06.2015- 15. Функции
Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.
презентация, добавлен 21.09.2013 Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
контрольная работа, добавлен 07.06.2011- 17. Симплекс-метод
Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.
контрольная работа, добавлен 06.04.2012 Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
презентация, добавлен 16.09.2013- 19. Теория игр
История развития теории игр как математического метода изучения оптимальных стратегий в играх. Представление игр: экстенсивная и нормальная форма. Классификация и типы математических игр, их характеристика. Общее понятие и основные цели метаигры.
реферат, добавлен 29.12.2010 - 20. Теория графов
Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа, добавлен 19.09.2011 История появления тригонометрии, роль Л. Эйлера в ее развитии. Тригонометрические функции плоского угла. Применение гармонических колебаний и волновых процессов. Преобразование Фурье и Хартли. Общее понятие про тригонометрическое нивелирование.
презентация, добавлен 29.03.2012Общее представление о событии. Понятие действительного, случайного и невозможного события. Даниил Бернулли, Христиан Гюйгенс, Пьер-Симон Лаплас, Блез Паскаль, Пьер Ферма и их вклад в развитие теории вероятностей. Формирование вероятностного мышления.
презентация, добавлен 03.05.2011История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат, добавлен 14.05.2015- 24. Поверхности
Основные признаки поверхности. Эллипсоид: понятие; плоскости симметрии. Сфера как замкнутая поверхность. Параметрические уравнения тора и катеноида. Общее понятие про геликоид. Параболоид как поверхность вращения. Параметрические уравнения цилиндра.
реферат, добавлен 21.11.2010 - 25. Эйлеровы графы
Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.
презентация, добавлен 12.04.2014