Золотое сечение
Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
Подобные документы
Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
презентация, добавлен 10.11.2014Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат, добавлен 09.04.2012Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат, добавлен 24.11.2009Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
реферат, добавлен 22.03.2015Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.
презентация, добавлен 14.12.2011Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.
презентация, добавлен 16.10.2013Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.
курсовая работа, добавлен 11.09.2012Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.
курсовая работа, добавлен 15.07.2010Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Определение понятия пропорции, ее крайних и средних членов и их соотношения. Примеры решения уравнений и практическое применение пропорции. Основные свойства соразмерностей и изменение положения ее членов в равенстве. Поиск неизвестного пропорции.
презентация, добавлен 15.02.2011Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа, добавлен 10.06.2014Понятие конических сечений. Конические сечения-пересечения плоскостей и конусов. Виды конических сечений. Построение конических сечений. Коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка.
реферат, добавлен 05.10.2008- 13. Сечения конуса
Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.
презентация, добавлен 12.12.2013 Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.
реферат, добавлен 18.01.2011Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.
контрольная работа, добавлен 06.08.2010- 16. Призма
Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.
презентация, добавлен 20.12.2010 - 17. Числа Фибоначи
Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.
презентация, добавлен 15.06.2017 - 18. Призма
Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.
презентация, добавлен 08.03.2012 Рассмотрение некоторых числовых последовательностей, заданных рекуррентно, их свойств и задач с ними связанных. Теория возвратных последовательностей. Свойства последовательности Фибоначчи и ее золотое сечение. Исследование последовательности Каталана.
реферат, добавлен 03.05.2015Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.
практическая работа, добавлен 16.06.2009"Конические сечения" Аполлония. Вывод уравнения кривой для сечения прямоугольного конуса вращения. Вывод уравнения для параболы, для эллипса и гиперболы. Инвариантность конических сечений. Дальнейшее развитие теории конических сечений в трудах Аполлония.
реферат, добавлен 04.02.2010Понятие пирамиды, ее математическое обоснование, отражение в науке и искусстве. Принцип Кавальери. Сечение пирамиды как многоугольника, который образуется при пересечении пирамиды с секущей плоскостью. Правильная пирамида и ее основополагающие свойства.
презентация, добавлен 18.04.2014Задача нахождения экстремума: сущность и содержание, оптимизация. Решение методами квадратичной интерполяции и золотого сечения, их сравнительная характеристика, определение основных преимуществ и недостатков. Количество итераций и оценка точности.
курсовая работа, добавлен 25.08.2014- 24. Призмы
Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.
презентация, добавлен 19.09.2011 Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".
статья, добавлен 18.04.2012