Теория поверхностей
История возникновения и понятия дифференциальной геометрии, в которой плоские и пространственные кривые и поверхности изучаются с помощью дифференциального исчисления и методами математического анализа. Применение темы "Теория поверхностей " в школе.
Подобные документы
Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.
реферат, добавлен 19.05.2014Основные свойства векторов. Теории кривых и поверхностей. Натуральная параметризация. Формулы Сере-Френе и Эйлера. Уравнение соприкасающейся окружности. Теорема Менье. Индикатриса Дюпена. Индексные обозначения в дифференциальной геометрии поверхностей.
курсовая работа, добавлен 01.02.2014Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.
дипломная работа, добавлен 06.06.2011Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.
реферат, добавлен 10.01.2009Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.
дипломная работа, добавлен 24.02.2010Виды точек регулярной поверхности. Удельная кривизна выпуклой поверхности. Сфера как единственная овальная поверхность постоянной средней кривизны. Основные понятия и свойства седловых поверхностей. Неограниченность седловых трубок и проблема Плато.
лабораторная работа, добавлен 29.10.2014Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение, добавлен 25.12.2010Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.
методичка, добавлен 18.02.2015Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа, добавлен 28.06.2009Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.
реферат, добавлен 07.12.2012Определение дифференциальной функции распределения f(x)=F'(x) и математического ожидания случайной величины Х. Применение локальной и интегральной теоремы Лапласа. Составление уравнения прямой линии регрессии. Определение оптимального плана перевозок.
контрольная работа, добавлен 12.11.2012Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа, добавлен 09.12.2011- 13. Теория узлов
История возникновения и развития теории узлов. Плоские диаграммы узлов и зацеплений. Характеристика инварианта раскрасок, полинома Конвея и d-диаграммы как основных способов задания узлов. Применение узлов в математике, биологии, физике и химии.
курсовая работа, добавлен 10.06.2014 Пределы функции, ее полное исследование с использованием дифференциального исчисления. Вычисление неопределенных интегралов с использованием методов интегрирования. Определенный и несобственный интегралы. Числовые ряды, их исследование на сходимость.
контрольная работа, добавлен 07.04.2013Решение системы трех уравнений с тремя неизвестными при помощи определителей. Исследование системы на совместность, составление канонического уравнения эллипса. Изучение функции методами дифференциального исчисления, поиск точки разрыва функции.
контрольная работа, добавлен 16.04.2010История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат, добавлен 09.10.2008Особенности изучения векторного метода в школьном курсе геометрии. История возникновения и становления аналитических методов. Различные подходы к определению понятия вектора в математике. Логико-дидактический анализ "Векторы в пространстве" в 10 классе.
дипломная работа, добавлен 08.12.2013История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
реферат, добавлен 07.09.2009Исследование геометрии поверхностей четырехмерного псевдоевклидова пространства индекса один (пространства Минковского). Определение пространства Минковского, его основные особенности, типы прямых и плоскостей. Развертывающиеся и линейчатые поверхности.
дипломная работа, добавлен 17.05.2010- 20. Теория игр
История развития теории игр как математического метода изучения оптимальных стратегий в играх. Представление игр: экстенсивная и нормальная форма. Классификация и типы математических игр, их характеристика. Общее понятие и основные цели метаигры.
реферат, добавлен 29.12.2010 Искривленность пространства. Изучение "параллельных прямых" на поверхности планеты. Первая и вторая основная квадратичная форма. Классификация точек поверхности. "Мыльные пленки", возникающие на замкнутых контурах. Нахождение средних кривизн поверхностей.
курсовая работа, добавлен 11.03.2014Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация, добавлен 12.04.2015Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.
презентация, добавлен 23.06.2013Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа, добавлен 04.05.2010Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.
дипломная работа, добавлен 28.10.2012