Линейные системы уравнений

Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

Подобные документы

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа, добавлен 13.04.2010

  • Сравнительный анализ численных методов решения систем линейных алгебраических уравнений. Вычисление определителей и обратных матриц. Реализация методов в виде машинных программ на языке высокого уровня и решение задач на ЭВМ. Модификации метода Гаусса.

    реферат, добавлен 04.03.2011

  • Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.

    лабораторная работа, добавлен 28.10.2014

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа, добавлен 04.01.2012

  • Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    реферат, добавлен 05.08.2009

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа, добавлен 18.11.2013

  • Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.

    реферат, добавлен 17.06.2014

  • Собственные значения и вектора матрицы. Применение итерационного метода вращений Якоби для решения симметричной полной проблемы собственных значений эрмитовых матриц. Алгоритмы решения задач и их реализация на современных языках программирования.

    курсовая работа, добавлен 15.11.2015

  • Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.

    контрольная работа, добавлен 23.01.2012

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие, добавлен 06.11.2011

  • Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.

    контрольная работа, добавлен 16.02.2012

  • Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.

    курсовая работа, добавлен 13.11.2012

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция, добавлен 02.06.2008

  • Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.

    презентация, добавлен 21.09.2013

  • Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    реферат, добавлен 12.06.2010

  • Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

    контрольная работа, добавлен 19.06.2009

  • Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.

    лабораторная работа, добавлен 24.09.2014

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа, добавлен 24.05.2009

  • Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.

    контрольная работа, добавлен 19.01.2014

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация, добавлен 21.09.2013

  • Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа, добавлен 27.03.2011

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа, добавлен 21.10.2011

  • Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.

    презентация, добавлен 22.11.2014

  • Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.

    контрольная работа, добавлен 04.09.2010

  • Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.

    курсовая работа, добавлен 07.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.