Анализ обобщенных функций
Обобщенная функция, заданная на прямой, - всякий непрерывный линейный функционал на пространстве основных функций. Комплекснозначная функция действительного переменного, называемая оригиналом. Характеристика функции Грина. Линейное неоднородное уравнение.
Подобные документы
Обозначение основных тригонометрических терминов: радианная и градусная мера угла, синус, косинус, тангенс, котангенс. Область определения функций и построение их графиков. Выведение формул сложения, суммы, разности и двойного аргумента функций.
презентация, добавлен 13.12.2011Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.
методичка, добавлен 23.12.2009Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.
учебное пособие, добавлен 09.03.2009Понятия зависимой, независимой переменных, области определения функции. Примеры нахождения области функции. Примеры функций нескольких переменных: линейная, квадратическая, функция Кобба-Дугласа. Построение графика и линии уровня функции двух переменных.
презентация, добавлен 17.09.2013Основные правила преобразования графиков на примерах элементарных функций: преобразование симметрии, параллельный перенос, сжатие и растяжение. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций.
презентация, добавлен 16.11.2010- 57. Ряд Фурье
Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация, добавлен 18.09.2013 Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.
контрольная работа, добавлен 24.10.2010Нахождение производных функций, построение графика функции с помощью методов дифференциального исчисления, нахождение точки пересечения с осями координат. Исследование функции на возрастание и убывание, нахождение интегралов, установка их расходимости.
контрольная работа, добавлен 09.04.2010Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция, добавлен 25.03.2012Задачи, приводящие к дифференциальным уравнениям, связывающих независимую переменную, искомую функцию и ее производную. Нахождение матрицы. Исследование функции и построение ее графика. Определение площади фигуры, ограниченной прямой и параболой.
контрольная работа, добавлен 14.03.2017Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа, добавлен 23.10.2010- 63. Формула Грина
Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа, добавлен 11.07.2012 Метод потенциальных функций, его использование для решения задач обучения машин распознаванию образов. Основные понятия: признаки объекта, пространство рецепторов. Алгоритмы, основанные на методе потенциалов. Потенциалы в пространстве рецепторов.
презентация, добавлен 30.10.2013Математическое ожидание случайной величины как ее характеристическая функция, определение ее свойств и признаков, расчет производных. Теоремы Хелли, особенности и направления их практического применения, условия и возможности расчета заданных функций.
курсовая работа, добавлен 30.01.2014Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.
контрольная работа, добавлен 25.03.2014- 67. Функции Бесселя
Изложение теории бесселевых функций, их приложения к уравнениям математической физики. Виды цилиндрических функций. Применение бесселевых функций в математической физике на примере некоторых задач. Уравнение Лапласа в цилиндрических координатах.
дипломная работа, добавлен 09.10.2011 Общая характеристика математической модели радиотехнического сигнала. Значение спектрального разложения функций в радиотехнике. Работа вещественных одномерных детерминированных сигналов и система синусоидальных и косинусоидальных гармонических функций.
курсовая работа, добавлен 13.08.2011Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.
презентация, добавлен 14.11.2014Основные понятия оптимизационных задач. Нахождение наибольших или наименьших значений многомерных функций в заданной области. Итерационные процессы с учетом градиента. Функционал для градиентного равенства и применение его в задачах условной оптимизации.
реферат, добавлен 15.08.2009Построение функций предпочтения при произвольном базовом многокритериальном объекте. Частная нормированная функция предпочтений и принципы ее коррекции. Функциональные требования и описание логической структуры данной функции, анализ работы приложения.
курсовая работа, добавлен 22.03.2014Синтез вариационного исчисления и метода функций Ляпунова в основе принципа динамического программирования. Метод знакопостоянных функций Ляпунова в решении задач о стабилизации и синтезе управления для нелинейной и автономной управляемых систем.
курсовая работа, добавлен 17.06.2011Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа, добавлен 27.05.2008Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.
контрольная работа, добавлен 20.01.2014Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.
контрольная работа, добавлен 07.09.2010