Вычисление характеристических многочленов, собственных значений и собственных векторов
Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.
Подобные документы
Понятие собственных векторов и собственных значений, их свойства и характеристики, порядок нахождения собственных векторов оператора. Критерии определения независимости и ортогональности собственных векторов. Факторы и теоремы положительных матриц.
реферат, добавлен 22.04.2010Выбор эффективного метода определения собственных значений и собственных векторов для конкретной инженерной задачи. Степенной метод вычисления максимального по модулю собственного значения матрицы A и его модификациями. Умножение матрицы на вектор.
методичка, добавлен 01.07.2009Нахождение собственных значений и векторов линейного преобразования, заданных в некотором базисе матрицей. Составление характеристического уравнения и нахождение семейства векторов и их значения при решении, корни характеристического уравнения.
контрольная работа, добавлен 29.05.2012Основные сведения, необходимые при решении задач на собственные значения. Итерационные методы. Определение собственных значений методами преобразований подобия. Определение собственных значений симметричной трехдиагональной матрицы.
реферат, добавлен 19.05.2006Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа, добавлен 23.01.2012Определение собственного вектора матрицы как результата применения линейного преобразования, задаваемого матрицей (умножения вектора на собственное число). Перечень основных действий и описание структурной схемы алгоритма метода Леверрье-Фаддеева.
презентация, добавлен 06.12.2011Исследование однопараметрической системы дифференциальных уравнений: нахождение линеаризации поля в особых точках, собственных чисел и векторов, периодов циклов. Изменение фазового портрета при значениях параметра вблизи его бифуркационного значения.
курсовая работа, добавлен 18.07.2014Численные методы решения систем линейных алгебраических уравнений, алгоритмы, их реализующие. Нормы матриц и векторов, погрешность приближенного решения системы и обусловленность матриц. Интеграционные методы решения: методы простой итерации, релаксации.
учебное пособие, добавлен 02.03.2010Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.
курсовая работа, добавлен 21.02.2010Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.
курсовая работа, добавлен 15.08.2012Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.
реферат, добавлен 12.08.2009Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.
презентация, добавлен 18.04.2013Собственные значения и вектора матрицы. Применение итерационного метода вращений Якоби для решения симметричной полной проблемы собственных значений эрмитовых матриц. Алгоритмы решения задач и их реализация на современных языках программирования.
курсовая работа, добавлен 15.11.2015Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.
курсовая работа, добавлен 21.10.2011Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа, добавлен 06.01.2011Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
контрольная работа, добавлен 24.05.2009Расчет денежных расходов предприятия на выпуск изделий, при выражении их стоимости при помощи матриц. Проверка совместимости системы уравнений и их решение по формулам Крамера и с помощью обратной матрицы. Решение алгебраических уравнений методом Гаусса.
контрольная работа, добавлен 28.09.2014Порядок и принципы составления дифференциального уравнения, методика нахождения неизвестных значений. Замена исходного дифференциального уравнения на систему n-линейных уравнений относительно n-неизвестных. Формирование и решение системы уравнений.
задача, добавлен 20.09.2013Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача, добавлен 29.05.2012Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат, добавлен 14.08.2009Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
контрольная работа, добавлен 24.10.2010Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.
курсовая работа, добавлен 07.09.2012Решение системы линейных алгебраических уравнений по формулам Крамер. Возведение комплексного числа в натуральную степень. Исследование функции на возрастание и убывание. Нахождение ординаты в экстремальной точке. Задача на вычисление длины дуги кривой.
контрольная работа, добавлен 13.12.2012Решение системы линейных алгебраических уравнений большой размерности с разреженными матрицами методом простого итерационного процесса. Понятие нормы матрицы и вектора. Критерии прекращения итерационного процесса. Выбор эффективного итерационного метода.
лабораторная работа, добавлен 06.07.2009Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа, добавлен 16.12.2008