Элементы линейной алгебры
Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
Подобные документы
Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.
реферат, добавлен 28.06.2009Система линейных алгебраических уравнений. Основные формулы Крамера. Точные, приближенные методы решения линейных систем. Алгоритм реализации метода квадратных корней на языке программирования в среде Matlab 6.5. Влияние мерности, обусловленности матрицы.
контрольная работа, добавлен 27.04.2011Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.
курсовая работа, добавлен 13.12.2011Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа, добавлен 04.05.2010- 105. Изучение матриц
Назначение и определение алгебраического дополнения элемента определителя. Особенности неоднородной системы линейных алгебраических уравнений. Определение размера матрицы. Решение системы уравнений методом Крамера. Скалярные и векторные величины.
контрольная работа, добавлен 13.07.2009 Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.
учебное пособие, добавлен 23.01.2014Система линейных уравнений. Векторная алгебра, линейные операции для векторов, векторное (линейное) пространство. Случайные события и величины, плотность распределения вероятности, математическое ожидание, дисперсия, среднее квадратическое отклонение.
методичка, добавлен 18.05.2010Определение наличия зависимости показателя Заработная плата от Возраста и Стажа с использованием корреляционной матрицы. Нормальность распределения остатков по: гистограмме остатков, числовым характеристикам асимметрии и эксцессу, критерию Пирсона.
курсовая работа, добавлен 05.12.2013Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.
курсовая работа, добавлен 30.06.2011Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение, добавлен 25.12.2010Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие, добавлен 09.03.2009Расчет эффективности ведения многоотраслевого хозяйства, отображение связей между отраслями в таблицах балансового анализа. Построение линейной математической модели экономического процесса, приводящей к понятию собственного вектора и значения матрицы.
реферат, добавлен 17.01.2011Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция, добавлен 14.12.2010Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.
курсовая работа, добавлен 22.09.2009- 116. Линейная алгебра
Понятие и сущность определителей второго порядка. Рассмотрение основ системы из двух линейных уравнений с двумя неизвестными. Изучение определителей n–ого порядка и методы их вычисления. Особенности системы из n линейных уравнений с n неизвестными.
презентация, добавлен 14.11.2014 Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.
презентация, добавлен 21.09.2013Понятие матрицы, эллипса, гиперболы и параболы. Системы уравнений с матрицами. Проекция вектора на ось и действия с векторами. Плоскость и прямые линии в пространстве, их взаимное расположение. Прямоугольная декартова система координат на плоскости.
контрольная работа, добавлен 30.11.2010- 119. Высшая математика
Решение системы линейных уравнений методами Крамера, обратной матрицы и Гаусса. Расчет длин и скалярного произведения векторов. Уравнение прямой, проходящей через точку параллельно направляющему вектору. Расчет производных функций одной и двух переменных.
контрольная работа, добавлен 19.04.2013 Решение системы линейных алгебраических уравнений большой размерности с разреженными матрицами методом простого итерационного процесса. Понятие нормы матрицы и вектора. Критерии прекращения итерационного процесса. Выбор эффективного итерационного метода.
лабораторная работа, добавлен 06.07.2009Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.
контрольная работа, добавлен 23.04.2013Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа, добавлен 19.03.2011Решение задач линейной алгебры с разреженными матрицами на примере дискретизации уравнения Пуассона. Сущность векторных и матричных норм, основные виды итерационных методов, определение и условия их сходимости. Понятие инвариантных подпространств.
учебное пособие, добавлен 02.03.2010Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа, добавлен 08.05.2009Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа, добавлен 14.12.2012