Функциональные уравнения на оси и полуоси
Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.
Подобные документы
Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат, добавлен 09.06.2011Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация, добавлен 16.01.2011Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.
курсовая работа, добавлен 14.09.2010Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа, добавлен 25.11.2013Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.
книга, добавлен 03.10.2011Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.
курсовая работа, добавлен 28.06.2013История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат, добавлен 09.05.2009Квази-средние как обобщение классических средних величин. Квази-средние и функциональные уравнения. Решение некоторых функциональных уравнений. Характеристическое свойство квази-средних. Квази-средние и выпуклые функции.
дипломная работа, добавлен 08.08.2007Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.
реферат, добавлен 11.04.2014Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.
реферат, добавлен 03.03.2010Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа, добавлен 23.07.2012Неполные дифференциальные уравнения и их приложения, необходимость их применения в различных областях науки. Понятия и определения, типы и методы решения. Переходная кривая железнодорожного пути. Движение пули внутри вещества. Погружение тел в воду.
курсовая работа, добавлен 29.10.2011Описание колебательных систем дифференциальными уравнениями с малым параметром при производных, асимптотическое поведение их решений. Методика регулярных возмущений и особенности ее применения при решении задачи Коши для дифференциальных уравнений.
курсовая работа, добавлен 15.06.2009Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011Существование и единственность решений дифференциальных уравнений. Геометрическая интерпретация решений. Линейные и нелинейные системы. Дифференциальные уравнения, моделирующие динамику популяций конкурирующих видов, их решения и фазовые портреты.
дипломная работа, добавлен 27.06.2012Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа, добавлен 13.06.2012Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.
курсовая работа, добавлен 17.06.2014Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа, добавлен 21.05.2013Методы решений иррациональных уравнений. Метод замены переменных. Линейные комбинации двух и более радикалов. Уравнение с одним радикалом. Умножение на сопряженное выражение. Метод решения уравнений путем выделения полных квадратов под знаком радикала.
контрольная работа, добавлен 15.02.2016Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа, добавлен 25.02.2009Решение уравнения гармонического осциллятора при помощи разложения в ряд Тейлора. Применение метода индуцированной алгебры. Решение уравнения гармонического осциллятора при помощи метода индуцированной алгебры. Сравнение работоспособности методов решений.
курсовая работа, добавлен 24.05.2012- 122. Теорема Ляпунова
Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 11.05.2012 Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.
курсовая работа, добавлен 15.08.2012Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа, добавлен 29.06.2012Понятие и содержание равносильных уравнений, факторы их оценивания. Теорема о равносильности уравнений и ее доказательство. Причины и пути приобретения посторонних корней при разрешении данных уравнений. Нахождение и сравнение множества решений.
презентация, добавлен 26.01.2011