Конечномерные идеалы в некоторых групповых алгебрах
Основные понятия, определения, свойства и примеры банаховых алгебр, понятие идеала, доказательство леммы. Определение спектра и резольвенты. Теорема о фактор-алгебре, ее следствия. Линейные непрерывные мультипликативные функционалы и максимальные идеалы.
Подобные документы
Теорема о промежуточных значениях; точка отрезка, в которой функция обращается в ноль. Первая и вторая теоремы Вейерштрасса. Теорема Кантора, равномерно-непрерывная функция на промежутке. Функционалы непрерывные на компакте метрического пространства.
задача, добавлен 28.12.2009Основополагающие понятия теории графов. Определение эквивалентности, порождаемое группой подстановок, и доказательство леммы Бернсайда о числе ее классов. Понятие перечня конфигурации и доказательство теоремы Пойа. Решение задачи о перечислении графов.
курсовая работа, добавлен 18.01.2014Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.
курсовая работа, добавлен 12.08.2009Теорема Ферма: содержание, доказательство, геометрический смысл. Теорема Ролля: производная функции, отсутствие непрерывности Отсутствует и дифференцируемости. Доказательство теоремы Лагранжа, общий вид, геометрический смысл, содержание следствия.
презентация, добавлен 21.09.2013- 5. Функционалы
Фундаментальные понятия теории квадратичных форм. Линейные, квадратичные и билинейные функционалы. Приведение квадратичной формы к каноническому виду. Классификация комплексных квадратичных функционалов. Определенные вещественные квадратичные функционалы.
контрольная работа, добавлен 24.08.2015 Основные понятия теории полуколец. Определение полукольца. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Свойства положительных полуколец.
дипломная работа, добавлен 08.08.2007Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.
курсовая работа, добавлен 20.05.2013Гиперболические уравнения и уравнения смешанного типа. Неограниченная область свойства решений эллиптических уравнений. Вспомогательные леммы и утверждения. Существование резольвенты дифференциального оператора. Применение преобразования Фурье.
реферат, добавлен 30.04.2013Элементарная теория сравнений. Диофантовы приближения. Определения и свойства сравнений. Теорема Эйлера, теорема Ферма. Китайская теорема об остатках, ее обобщение Цинь Цзюшао. Применение к решению олимпиадных задач. Применение к открытию сейфа в банке.
курсовая работа, добавлен 29.09.2015Исследование самых абстрактных алгебраических систем, в частности, универсальных алгебр. Основные определения, обозначения и используемые результаты. Свойства централизаторов конгруэнции универсальных алгебр. Конгруэнция Фраттини, подалгебра Фраттини.
курсовая работа, добавлен 22.09.2009Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.
курсовая работа, добавлен 19.06.2012Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.
презентация, добавлен 17.09.2013Понятие и характерные признаки равносильных уравнений, требования к множеству их решений. Теорема о равносильности уравнений и порядок ее доказательства, значение в современной математике. Порядок и основные этапы нахождения корней уравнения-следствия.
презентация, добавлен 17.03.2011Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат, добавлен 17.06.2014Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.
курсовая работа, добавлен 01.10.2011Клеточные разбиения классических пространств. Важность для геометрии и топологии клеточного разбиения многообразий Грассмана. Гомотопические свойства клеточных пространств. Теорема о клеточной аппроксимации. Доказательство леммы о свободной точке.
курсовая работа, добавлен 15.06.2009- 17. Теорема Пифагора
Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация, добавлен 05.12.2010 Векторы и основные линейные операции над ними. Понятие о скалярной величине, сложение и вычитание. Векторное произведение: понятие, свойства, особенности определения. Пример вычисления двойного векторного произведения. Доказательство тождества Лагранжа.
контрольная работа, добавлен 26.11.2013Теорія формацій алгебраїчних систем. Основні визначення, позначення й використовувані результати. Властивості централізаторів конгруенції універсальних алгебр. Формаційні властивості нильпотентних алгебр. Класи абелевих алгебр і їхні властивості.
дипломная работа, добавлен 20.01.2011Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
дипломная работа, добавлен 18.09.2009Основные понятия и результаты, связанные с теорией диофантовых уравнений, теорией эллиптических кривых и abc-гипотезой. Метод бесконечного спуска и доказательство теоремы Ферма для n=4. Анализ выводов К. Рибета Великой теоремы Ферма из гипотезы Таниямы.
дипломная работа, добавлен 26.05.2012Первое доказательство существования иррациональных чисел. Развитие теории пропорций Евдоксом Книдским. Теоремы, корень из 2 - иррациональное число. Трансцендентное число: сущность понятия, свойства, примеры, история. История уточнения числа пи.
контрольная работа, добавлен 27.11.2011Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
научная работа, добавлен 18.01.2010Основные понятия, леммы и предложения. Доказательство основной теоремы. Полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания. Основные трудности при работе с полукольцами.
дипломная работа, добавлен 08.08.2007- 25. Теорема Силова
Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа, добавлен 21.04.2011